
           
                                                                                        

                                                              
                                                                                                        NUREG/CR-6848 

Preliminary Validation of a
Methodology for Assessing
Software Quality 

University of Maryland

U.S. Nuclear Regulatory Commission
Office of Nuclear Regulatory Research
Washington, DC 20555-0001



                                                                                                                   
                                                                                                                            
                                                                                                
                                                                                                               
                                                                                                                          NUREG/CR-6848

Preliminary Validation of a
Methodology for Assessing
Software Quality

Manuscript Completed:June 2004
Date Published: July 2004

Prepared by
C.S. Smidts, M. Li

Center for Reliability Engineering
Reliability Engineering Program
University of Maryland
College Park, MD 20742

S.A. Arndt, NRC Project Manager

Prepared for
Division of Engineering Technology 
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC  20555-0001
NRC Job Code Y6591





iii

ABSTRACT

This report summarizes the results of research conducted by the University of Maryland to
validate a method for predicting software quality.  The method is termed the Reliability
Prediction System (RePS).  The RePS methodology was initially presented in
NUREG/GR-0019.  The current effort is a preliminary validation of the RePS methodology with
respect to its ability to predict software quality (measured in this report and in NUREG/GR-0019
in terms of software reliability) and, to a lesser extent, its usability when applied to relatively
simple applications.  It should be noted that the current validation effort is limited in scope to
assess the efficacy of the RePS methodology for predicting software quality of the application
under study for one phase of software development life cycle.  As such, the results indicate that
additional effort on a "full scope" software development project is warranted.

The application under validation, Personnel entry/exit ACcess System (PACS), is a simplified
version of an automated personnel entry access system through a gate to provide privileged
physical access to rooms/buildings, etc.  This system shares some attributes of a reactor
protection system, such as functioning in real-time to produce a binary output based upon
inputs from a relatively simple human-machine interface with an end user/operator.

This research gives preliminary evidence that the rankings of software engineering measures in
the form of RePSs can be used for assessing the quality of software in safety critical
applications.  The rankings are based on expert opinion, as described in NUREG/GR-0019. 
Further validation effort is planned and will include data from the entire software development
life cycle of a larger scale software product, preferably a highly reliable application of requisite
complexity to demonstrate the efficacy of the RePS methodology to predict software quality of
nuclear safety-related systems. 



iv



v

CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

FOREWORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1  Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2  Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.0  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1  Selection of the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2  Measures/Families Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3  Measurement Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4  Reliability Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5  Reliability Prediction Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.6  Assessment of Measures' Predictive Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.7  Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 SELECTION OF THE MEASURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.0  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1  Criteria for measure selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2  Ranking Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3  Ease of Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4  Ease of RePS Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5  Coverage of Different Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.6  Final Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 PACS RELIABILITY ASSESSMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.0  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1  TestMaster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2  WinRunner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3  Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4  Operation Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5  Reliability Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 RELIABILITY PREDICTION SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.0  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1  Mean Time To Failure (MTTF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1.1  Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.1.1  Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1.2  RePS Construction and Reliability Estimation . . . . . . . . . . . . . . . . . . . . 19
5.2  Defect Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2.1  Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.2  Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2.2.1  Requirements Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.2.2  Design Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.2.3  Source Code Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.2.4  Lines of Code Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2.3  Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.4  RePS Construction and Reliability Estimation . . . . . . . . . . . . . . . . . . . . 27

5.2.4.1  Method for Estimation of PIE . . . . . . . . . . . . . . . . . . . . . . . . . 28



vi

5.2.4.2  The Estimation of the Failure Probability . . . . . . . . . . . . . . . . 29
5.2.4.3  Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3  Test Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.1  Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.2  Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.3  Test Coverage Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.4  RePS Construction and Software Reliability Estimation . . . . . . . . . . . . 35

5.4  Bugs per Line of Code (Gaffney Estimate) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4.1  Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4.2  Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4.3  RePS Construction and Reliability Estimation . . . . . . . . . . . . . . . . . . . . 39

5.5  Function Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5.1  Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5.2  Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5.3  Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5.4  RePS Construction from Function Point . . . . . . . . . . . . . . . . . . . . . . . . 44

5.6  Requirements Traceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.6.1  Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.6.2  Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
 5.6.3 RePS Constructed From Requirements Traceability . . . . . . . . . . . . . . . 48

5.7  Results Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.0  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1  Expanding to Other Measures, Applications, Lifecycle Phases . . . . . . . . . . . . . . 51
6.2  Improving the Current RePSs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2.1  Towards a Full Defect Density RePS . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2.1.1  Estimation of the Number of Defects Remaining  . . . . . . . . . . 51
6.2.1.2  Chaos Mth Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2.1.3   From Defects Remaining to Reliability . . . . . . . . . . . . . . . . . . 56

6.2.2  Improvements for RePS from Test Coverage . . . . . . . . . . . . . . . . . . . . 56
6.2.3  RePS from Requirements Traceability . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2.4  Function Point RePS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2.5  Bugs Per Line of Code RePS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 EXPERT REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.1  Review Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2  Responses From Experts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8 RePS APPLICATION TO PACS II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.0  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.1  Application under Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.2  Validation Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.3  Measurement of PACS II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.3.1  PACS II Reliability Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.3.2  Mean Time to Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.3.3  Defect Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.3.4  Test Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.3.5  Requirements Traceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.3.6  Function Point  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.3.7  Bugs per Line of Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.4  RePS Results of PACS II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.4.1  Mean Time to Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.4.2  Defect Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.4.3  Test Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.4.4  Requirements Traceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.4.5  Function Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.4.6  Bugs per Line of Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.5  Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



vii

10 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figures

Figure 1  Test Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 2   TestMaster Model Read_Card and Its Different Modeling Elements . . . . . . . . . . . 12

Figure 3   WinRunner Test Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 4   WinRunner Test Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 5   Finite State Machine Model for Enter PIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 6   Parameters of the Transition Between the State PreEntering and FirstDigitOut10s 31

Figure 7   Fault Coverage vs. Test Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Tables

Table 1   Object-Oriented Measures Ranking Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Table 2   Measures' Availability, Relevance to reliability, and Ranking Class . . . . . . . . . . . . . 10

Table 3   PACS' Operational Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Table 4   MTTF Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Table 5   MTTFi and the Corresponding values of ρr  and psr . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Table 6   Values of the Primitives Di, j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Table 7   Values of the Primitives DFl, k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Table 8   Values of the Primitives DUm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Table 9   Primitive LOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Table 10   Unresolved Defects Leading to Level 1 Failures Found During Inspection . . . . . . . 27

Table 11   PACS's Function Point Count:  General System Characteristics . . . . . . . . . . . . . . 33

Table 12   PACS's Function Point Count:  ILF and EIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



viii

Table 13   PACS's Function Point Count:  EI, EO, EQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Table 14   Measurement Results for Statement Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Table 15   Defects Remaining vs Test Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Table 16   Reliability Estimation Based on Test Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Table 17   Bugs Per Line of Code Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 18   Computing Function Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Table 19   General System Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 20   Data Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 21   Transaction Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 22   Extract From Table 3.46 U.S. Averages for Delivered Defects per Function Point . 45

Table 23   Definition of Software Types Used in Table 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table 24   Extract From Table 3.48 U.S. Averages for Delivered Defects by Severity Level . . 46

Table 25   Definition of Severity Levels Used in Table 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Table 26   Number of Delivered Defects vs. Ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Table 27   Requirements Traceability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Table 28   Requirements Traceability Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Table 29   Measurement, Reliability Prediction vs the Prediction Quality. . . . . . . . . . . . . . . . 49

Table 30   Validation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 31   Inspection Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Table 32   Defects Discovery Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Table 33   Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Table 34   Measurement Team Responsibilities and Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Table 35   Operational Profile for PACS II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Table 36   Reliability Testing Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



ix

Table 37   Defects Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table 38    Requirements Traceability Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Table 39   Bugs per LOC Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Table 40   Test Coverage RePS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Table 41   Number of Delivered Defects vs.ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Table 42   Validation Results of PACS and PACS II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



x



xi

EXECUTIVE SUMMARY

This report summarizes the results of research conducted by the University of Maryland to
validate a method for predicting software quality and reliability.  The method is termed the
Reliability Prediction System (RePS).  The RePS methodology was initially presented in
NUREG/GR-0019.  The current effort validates the RePS methodology with respect to its ability
to predict software quality (measured in this report and in NUREG/GR-0019 in terms of
software reliability) and, to a lesser extent, its usability.  It should be noted that the current
validation effort is limited in scope to assess the efficacy of the RePS methodology for
predicting software quality of a relatively simple application for one phase of software
development life cycle.  As such, the results indicate that additional effort on a "full scope"
software development project is warranted.

In NUREG/GR-0019 thirty-two software engineering measures were ranked with respect to their
software quality prediction ability.  A theory on how to predict software reliability from those
measures (the RePS theory) was proposed.  The validation effort presented in this report
comprises two parts:

1. Validation of the RePS theory.
   

By establishing RePSs from the measures selected in this study, these RePSs
can be used to predict the software reliability of a given software application. 
After selecting the software application, the result of RePSs’ software quality
predictions are then validated by comparing the predictions to the "real" software
reliability obtained from software testing;

2. Validation of the rankings presented in NUREG/GR-0019.
   

By comparing NUREG/GR-0019 rankings to the RePS predictions calculated for
this study, efficacy of the proposed methodology for predicting software quality
can be determined.

Because this initial validation is limited in scope, six measures were selected from the initial
thirty-two.  The six selected measures are "Mean time to failure", "Defect density", "Test
coverage", "Requirements traceability", "Function point analysis" and "Bugs per line of code
(Gaffney estimate)".

The application under validation, Personnel entry/exit ACcess System (PACS), is a simplified
version of an automated personnel entry access system that controls physical access to
rooms/buildings, etc.  This system shares some attributes of a reactor protection system, such
as functioning in real-time to produce a binary output based upon inputs from a relatively simple
human-machine interface with an end user/operator.

PACS's reliability (ps) was assessed by testing the software code with an expected operational
profile.  The testing process involves: developing a test oracle using Test Master, a tool that
generates test scripts in accordance with the operational profile; executing the test scripts using
WinRunner, the test harness that also records the test results; and calculating the reliability of
PACS using the recorded results.



xii

Next, six RePSs were established for the test phase.  From these RePSs six reliability
estimates were calculated and compared with ps.  The prediction error, defined as the relative
difference between ps and the estimated value, was used to rank the measures.  This ranking
was found to be consistent with the rankings presented in NUREG/GR-0019.

This research gives preliminary evidence that the rankings of software engineering measures in
the form of RePSs can be used for assessing the quality of software in safety critical
applications.  The rankings are based on expert opinion, as described in NUREG/GR-0019. 
Further validation effort is planned and will include data from the entire software development
life cycle of a larger scale software product, preferably a highly reliable application of requisite
complexity.  This larger-scale validation effort will demonstrate the efficacy of the RePS
methodology to predict software quality of nuclear safety-related systems.



xiii

FOREWORD

Currently the NRC's review process for instrumentation, control and protection system software
is based on state-of-the-practice in software engineering, which is a qualitative review of the
software’s development process.  These reviews are time consuming and do not provide
quantitative estimates of the quality or reliability of the digital system.  The NRC is investigating
several methods to provide quantitative estimates of software reliability to support possible
updates to our current regulatory review process that could be used to evaluate software, and
improve the effectiveness and realism of the reviews.  Additionally these methods will provide
the quantitative reliability estimates needed to support more realistic PRA analysis of digital
systems.

The research project discussed in this report is the second phase of an effort to develop a
method that could be used to provide a more quantitative assessment of the acceptability of
software used in nuclear power plant safety systems.  This research was conducted by the
University of Maryland’s Center for Reliability Engineering. 

The first phase of research established a method of aggregating software engineering
measures to predict the quality and reliability of safety system software.  The method was
previously documented in NUREG/GR-0019, "Software Engineering Measures for Predicting
Software Reliability in Safety Critical Digital Systems."  The second phase of the research,
described in this report, was to validate that this method could be used to accurately predict the
quality and reliability of an actual software application.  This report documents the validation of
the method for assessing software quality using a relatively simple digital system, the PACS
automated personnel entry access system.  Although the results from this initial validation effort
appear to be positive, with respect to the ability of the method to predict software reliability, this
method has yet to be proven on more complex systems found in safety systems in nuclear
power applications.

The NRC is planning to conduct additional work to validate the method on a larger scale using
an instrumentation and control system that was designed for use in nuclear power plants.  The
NRC has not endorsed this method.  Additional work is needed to determine how whether the
method will realistically and consistently predict the quality and reliability of safety related
software systems.

________________________
Carl J. Paperiello, Director 
Office of Nuclear Regulatory Research
U. S. Nuclear Regulatory Commission



xiv



xv

ACKNOWLEDGMENTS

We wish to acknowledge the support and interest of the U.S. Nuclear Regulatory Commission
(NRC) Office of Research and in particular, that of Steven Arndt, the NRC project manager.

We would like to especially acknowledge the West Virginia University research team (Bojan Cukic
and Dejan Desovski) for their development of PACS II described in Chapter 8.

We also would like to thank Avik Sinha.  He was in charge of the TestMaster/WinRunner testing
environment and provided us with the test results necessary for this validation study.  Special
thanks are also given to Hamed Nejad and Sushmita Ghose for being our test inspectors.

We owe special thanks to Ehsaneh Sadr for her editorial review of this report.

And finally we would like to thank the experts for their review of a preliminary version of this
document and valuable feedback.



xvi



xvii

ACRONYMS

CMM Capability Maturity Model
CR Capture Recapture
DD Defect Density
DET Data Element Type
DS Data Set
EI External Input
EIF External Interface File
EO External Output
EQ External Query
FP Function Point
FTR File Type Reference
GUI Graphical User Interface
I&C Instrumentation and Control
I/O Input/Output
ILF Internal Logical File
LOC Line Of Code
LVL Level
MIS Management Information System
MRL Master Requirements List
MTTF Mean Time To Failure
OO Object Oriented
PACS Personnel Access Control System
PIE Propagation, Infection, Execution
PIN Personal Identification Number
RePS Reliability Prediction System
SRM Software Reliability Model
RT Requirements Traceability
TSL Test Script Language
UMD University of Maryland
UML Unified Modeling Language
VAF Value Adjustment Factor
UFP Unadjusted Function Point



xviii



1

1. INTRODUCTION

1.1  Background

Software-based digital I&C systems are progressively replacing analog systems in
safety-critical applications like nuclear power plants.  This inevitably raises technical and
regulatory concerns. Among these is the lack of consistent methods for verifying compliance
with system reliability requirements.  While standard methods for predicting analog hardware
reliability are accepted within the nuclear power community, similar methods for safety-grade
(Class 1E) digital systems have not yet been established [28].

The first step towards systematic resolution of this issue is presented in NUREG/GR-0019 [34]. 
In this study a three-dimensional classification scheme was established to help improve
understanding of software engineering measures.  The "family" concept was introduced and
used to group semantically similar measures.  The Reliability Prediction System (RePS) was
also introduced to encapsulate the set of measures capable of predicting software reliability
values.  Thirty software engineering measures were ranked by field experts for the purpose of
selecting those that best predict software reliability and thus software quality.  The top
measures identified by this ranking are prime candidates from which to build acceptable
RePSs.  The field experts also identified measures that were absent from the original set of
thirty.  These measures, named "missing measures", consisted primarily of those used to
characterize Object Oriented designs.  These measures were ranked by University of Maryland
(UMD) experts and integrated into the original set of thirty software engineering measures.

Before this method and the measures identified can be used in the regulatory process, their
usability and validity must be assessed.

1.2  Objectives

The objective of this study is to evaluate the methodology presented in NUREG/GR-0019 [34]
with respect to its predictive ability and, to a lesser extent, its usability.  The methodology is
evaluated by testing its ability to correctly assess the quality of completed software
development projects that contain documented faults.  The current effort is a small-scale
experiment which focuses on software measures and families for the test phase of the software
life cycle and attempts to partially corroborate the ranking established by the experts (as
described above) for one completed project.  This small-scale effort should lay the foundation
for future larger-scale validation experiments.

During the performance of this research potential theoretical and practical roadblocks that could
prevent a large-scale validation study may be identified.  This effort should also outline the
specifics of the large-scale experiment.  Chapter 2 describes the methodology used while
chapter 3 defines the measures selected as well as the rationale for their selection.  In chapter
4, the technique used to perform a reliability assessment of the Personnel Access Control
System (PACS) is described.  In chapter 5, the preliminary Reliability Prediction Systems are
given for each of the measures selected. Future research is discussed in Chapter 6.   Chapter 7
contains the summary of recommendations for future research.  Chapter 8 presents the
validation results on a new developed application:  PACS II.  Chapter 9 contains conclusions.



2

2. METHODOLOGY

2.0  Overview

The research methodology used is described below.  It consists of 7 main steps.  These are:

1. Selection of the Application;
2. Measures/Families Selection;
3. Measurement Formalization;
4. Reliability Assessment;
5. Construction of Reliability Prediction Systems;
6. Measurement and Analysis;
7. Validation of the Approach and Results;

Each step is described in detail below.

2.1  Selection of the Application

Software used by nuclear power plants typically belongs to a class of high-integrity,
safety-critical, and real-time software systems.  The system selected for this study should, to
the extent possible, reproduce these same characteristics.

The Personnel Access Control System (PACS) is the application selected by the University of
Maryland. PACS is a simplified version of an automated personnel entry access system (gate)
used to provide privileged physical access to rooms/buildings, etc.  A user inserts his or her
personal ID card containing a name and social security number into a reader.  The system:

a) Searches for a match in a software system database that is periodically updated by
system administration;

b) Instructs/disallows the user to enter his/her 4 digit personal identification number (PIN),
into a display attached to a simple 12 position keyboard;

c) Validates or invalidates the code; and
d) Instructs or disallows entry through a turnstile gate.

A single line display screen provides instructional messages to the user.  An attending security
officer monitors a duplicate message on his console with override capability.

Two versions of PACS were developed for the National Security Agency.  The first version
(Version A) was created through use of formal mathematical methods while the second
(Version B) was developed using an object-oriented (OO) methodology and a Capability
Maturity Model (CMM) level 4 software development process [9, 10, 39].  The two versions of
PACS were tested by UMD.  The research team also performed a reliability assessment of the
systems for a given user-defined usage profile.  The failure modes of these two PACS versions
were identified during this process.  UMD has kept on file the following documentation:
 
1. Original User Requirements Specifications (informal).
2. For Version A:



3

  
a. Requirements Specification in Haskell (formal).  Haskell is a computer

programming language that is polymorphically typed, lazy, and purely functional
in a way that is quite different from most other programming languages;

b. Requirements Specification in SLANG (formal).  SLANG is the language
recognized by Specware and is based on category theory;

c. Automatically generated C++ code.  The code is generated automatically using a
tool called Specware.

3. For Version B:

a. Requirements Analysis Document;
b. Design Specifications Documents (in UML);
c. C++ Source Code;
d. Test Plan;
e. Test Reports;
f. Program Management Plan;
g. Process Handbook;
h. Process Management Report; and
i. Inspection Log.

4. Automated test environments for both versions of the code.

The availability of such environments allows for rapid generation of additional or
different test cases, if necessary.  The environments use two distinct tools:  TestMaster,
a test generation tool and WinRunner, a test execution tool.

A priori PACS is an attractive candidate for the validation because:
 
1. PACS is a real time control system that shares many important characteristics with the 

applications of interest to NRC;

2. UMDs close involvement in the development of PACS as well as our easy access to its
developers makes it an attractive candidate;

3. PACS is small and thus any required measurements can be completed within
reasonable time constraints;

4. The two versions of PACS were developed using state of the art software development
methodologies.

PACS Version B was selected for this study largely due to concerns about the ease of data
collection.  The development process based on formal methods (Version A) is limited to a
requirements analysis stage ending in the writing of formal requirements specifications.  As the
source code is generated automatically from the formal requirements specifications, there is no
design or coding stage per the software lifecycle.  Furthermore, the source code, being
machine-generated, is difficult to understand and analyze.  This hinders measurement and
leads to a necessary reinterpretation of a large number of measures such as defect density.  In
contrast, Version B is based on OO development and the CMM paradigm, thereby allowing for
easy measurement. 



4

2.2  Measures/Families Selection

In order to perform an initial validation of the ranking of measures defined in NUREG/GR-0019,
two software engineering measures were selected from the high-ranked, medium-ranked, and
low-ranked categories identified in the report [34].  This selection of 6 measures allowed for a
PARTIAL validation of the ranking.

The set of measures selected is listed below.
  
1. Highly-ranked measures:  Mean time to failure, Defect density.
2. Medium ranked measures:  Test coverage, Requirements traceability.
3. Low-ranked Measures:  Function point analysis, Bugs per line of code (Gaffney). 

A detailed discussion of the measures selection process follows in Chapter 3.  These
measurements were limited to the testing phase.

2.3  Measurement Formalization

For a measurement to be useful it must be repeatable.  Our experience with NUREG/GR-0019
[34] has shown that no standard definition of the measures exists, or at least no standard
definition that ensures repeatability of the measurement.  To correct this, the UMD team began
by reviewing the definitions of the measures [1] to define precise and rigorous measurement
rules.  This set of measurement rules is documented in Chapter 5.  The values of the selected
measures were then obtained by applying these established rules to the PACS system.  This
step was seen as necessary due to the inherent limitations of the IEEE standard [1].

2.4  Reliability Assessment

The quality of PACS is measured in terms of its reliability estimate.  Reliability is defined here
as the probability that the digital system will successfully perform its intended safety function
(for the distribution of conditions under which it is expected to respond) upon demand and with
no unintended functions that might affect system safety.  The UMD team selected a user-profile
and assessed PACS's reliability using thorough testing.  The test process, the user's profile and
the test results are documented in Chapter 4.

2.5  Reliability Prediction Systems

The measurements made do not directly reflect reliability.  NUREG/GR-0019 [28] recognizes
the Reliability Prediction System (RePS) as a way to bridge the gap between the measurement
and reliability.  RePSs for the measures selected were identified and additional measurements
were carried out as needed. RePS construction is discussed in Chapter 5.



5

2.6  Assessment of Measures' Predictive Ability

The next step was assessment of the measures' predictive ability.  The measures' values were
compared with the reliability of the code.  Discrepancies were analyzed and explained.  This
analysis is also presented in Chapter 5.  Chapter 6 discusses how the predictive ability of the
measures (RePSs) can be improved.

2.7  Validation

To validate this studys approach, experts were recruited to review the methodology and results
obtained.  Four experts were contacted and invited to participate in the review.  These experts
took part in the study presented in NUREG/GR-0019 [28] and have extensive knowledge of the
topic under study.  The review was carried out in the following way:

1. UMD formally solicited the expert's participation.

2. The documents generated throughout the study were sent to the selected experts.  The
documents included:

a)  A description of the methodology used;
b)  A description of the case-study;
c)  A description of the measures/families selected along with their measurement rules;  
d)  A description of the RePSs; and
e)  A discussion of the final results.

3. The experts were provided with a specific set of questions to help guide their review.
Comments and written reviews were expected back within two weeks of reception of the
documents and questionnaire.

4. Potential solutions were proposed to any problems highlighted in the experts'
comments.

This review process is described in Chapter 7. Chapter 8 presents the validation results on a
new developed application:  PACS II.  Chapter 9 contains our conclusions. 



1The initial study involved 30 measures. The experts then identified an additional 10 missing measures
bringing the total number of measures involved in the study to 40.  Thirty-two of these measures are applicable to
OO development. 

6

3. SELECTION OF THE MEASURES

3.0  Overview

This chapter addresses the rationale for and selection of measures used in the project.  The
final selection of the measures includes "Mean time to failure", "Defect density", "Test
coverage", "Requirements traceability", "Function point", and "Bugs per line of code (Gaffney
estimate)".

3.1  Criteria for measure selection

Measures for the validation project were selected based upon the following criteria:
  

1. Ranking levels
2. Data availability
3. Ease of RePS construction
4. Coverage of different families

Each of the above criteria is described in greater detail below.

3.2  Ranking Levels

This project is designed to validate the results presented in NUREG/GR-0019 [34] "Software
Engineering Measures for Predicting Software Reliability in Safety Critical Digital Systems".  In
that study forty1 measures were ranked based on their ability to predict software reliability in
safety critical digital systems.  This study must be validated to confirm that highly ranked
measures do in fact yield high software reliability prediction quality.  High prediction quality
means that the prediction is close to the actual software reliability value.

A complete validation could be performed by:  1) predicting software reliability from each of the
pre-selected thirty-two measures in NUREG/GR-0019; and then 2) comparing predicted
reliability with actual reliability obtained through reliability testing.  Unfortunately, however, the
limited schedule and budget of the current research constrain our ability to perform such a
brute-force experiment on all thirty-two measures.  An alternative method was proposed
whereby:  a) two measures are selected from among the high-ranked, medium-ranked, and
low-ranked measures; b) the above experiment is performed on these six measures; and c) the
results are extrapolated to the whole spectrum of measures.



2These thresholds are determined by the mean (µ) and standard deviation (σ) of the distribution of the rates
of the measures. The intervals correspond to: µ+ σ� rate � upper limit, µ-δ �  rate < µ+σ,   lower limit �  rate < µ - σ.

7

The thirty-two object-oriented measures available during the testing phase were classified into
the high-ranked, medium-ranked and low-ranked measures using the following thresholds2: 

1. high-ranked measures: 0.75 � rate � 0.83 
2. medium-ranked measures: 0.51 � rate < 0.75  
3. low-ranked measures: 0.40 � rate < 0.51 

Table 1 lists the high-ranked measures, medium-ranked measures and low-ranked measures. 

Table 1   Object-Oriented Measures Ranking Classification

Measure Rate Ranking Class
Failure rate 0.83

High

Code defect density 0.83
Coverage factor 0.81
Mean time to failure 0.79
Cumulative failure profile 0.76
Design defect density 0.75
Fault density 0.75
Fault-days number 0.72

Medium

Mutation score 0.71
Requirements specification change
requests 0.69

Test coverage 0.68
Class coupling 0.66
Class hierarchy nesting level 0.66
Error distribution 0.66
Number of children (NOC) 0.66
Number of class methods 0.66
Lack of cohesion in methods (LCOM) 0.65
Weighted method per class (WMC) 0.65
Man hours per major defect detected 0.63
Functional test coverage 0.62
Reviews, inspections and walkthroughs 0.61
Software capability maturity model 0.60
Requirements traceability 0.55
Number of faults remaining (error seeding) 0.51
Number of key classes 0.51
Function point analysis 0.50

Low

Mutation testing (error seeding) 0.50
Requirements compliance 0.50
Full function point 0.48
Feature point analysis 0.45
Cause & effect graphing 0.44
Bugs per line of code (Gaffney) 0.40



3The rates in this paragraph are extracted from Table 5-19 in NUREG/GR-0019 with one exception: the
measure "Completeness" is replaced with the measure "Bugs per line of code (Gaffney)". Strictly the measure “Bugs
per line of code (Gaffney)” is not suitable to OO.  However, with the analogy of the concept of "module" in "Bugs per
line of code (Gaffney)" to the concept of "class" in OO regime the measure "Bugs per line of code (Gaffney)" is
transformed as one OO measure. 

8

The measures "Mean time to failure" [rank No. 4]3, and "Defect density", (which includes "Code
defect density" [No. 2] and "Design defect density" [No. 6]) were chosen as high-ranked
measures.  The measures "Test coverage" [No. 11] and "Requirements traceability" [No. 23]
were selected as the medium-ranked measures.  The low-ranked measures included "Function
point" [No. 26] and "Bugs per line of code (Gaffney estimate)" [No. 32]. 

3.3  Ease of Data Collection

Ease of data collection and data availability were important criteria by which measures were
selected.  PACS, the system used for the validation process, was developed using the
object-oriented method (UML).  The measures used for validation must also be selected from
the object-oriented measures identified in NUREG/GR-0019.  The availability of these
measures during the PACS development process must also be ensured.  Table 2 provides
information as to the availability of the measures considered.

3.4  Ease of RePS Construction

The validation process utilizes the RePS concept to predict software reliability.  Therefore,
RePSs must be constructed from each measure selected.  The selected measure is then called
the "root" of its corresponding REPS.

A RePS is a complete set of measures from which software reliability can be predicted.  The
bridge between the RePS and software reliability is generally termed "software reliability model
(SRM)".  It may be difficult to find an SRM for all RePSs.  In other words, not all measures can
serve as roots from which an RePS can be constructed and the software reliability predicted. 
The selection of measures must positively answer the question: "Is RePS construction from this
measure feasible?"

This question is directly related to the value of the "Relevance to Reliability" ranking criterion
used in NUREG/GR-0019.  This criterion was used to identify measures relevant to software
reliability prediction.  The value of this criterion directly reflects the ease of RePS construction
from the measure.  Therefore, an important consideration of the selection is to choose the
measures with the highest relevance to reliability evaluation within each ranking group to ease
the construction of the RePS.  Values for the criterion"Relevance to Reliability" for all measures
are listed in Table 2.



4The "semantic" concept was also termed as "family" in [34] which is defined as a set of software
engineering measures that evaluate the same quantity. 

5By object-oriented measures the authors mean that these measures are applicable to object oriented
systems.

9

3.5  Coverage of Different Families

The attempt was made to select measures from as many families as possible so as to obtain a
broad coverage of semantic concepts4.  The six selected measures were chosen from the
following families: "Failure rate", "Fault detected per unit of size", "Test coverage",
"Requirements traceability", "Functional size" and "Estimate of faults remaining in code".  This
selection reflects a bias toward failure and fault related families as well as requirements related
families.  This is due to a strong belief that software reliability is largely based upon faulty
characteristics of the artifact and the quality of requirements used to build the artifact.

3.6  Final Selection

Table 2 lists several characteristics of the pre-selected object-oriented (OO) measures5

including:  a) availability for PACS; b) the "Relevance to Reliability"; c) ranking; and d) their
families.

The final selection is thus as follows:  "Mean time to failure", "Defect density", "Test coverage",
"Requirements traceability", "Function point analysis", and "Bugs per line of code (Gaffney
estimate)".



10

Table 2   Measures' Availability, Relevance to reliability, and Ranking Class

Measure Family Availability
for PACS

Relevance to
Reliability

Ranking
Class

Failure rate Failure rate 0.98

High

Mean time to failure Failure rate 0.95
Cumulative failure profile Failure rate 0.93
Coverage factor Fault-tolerant coverage factor 0.90
Code defect density Fault detected per unit of size 0.85
Fault-days number Time taken to detect and remove

faults
0.82

Design defect density Fault detected per unit of size 0.78
Mutation score Test adequacy 0.75
Fault density Fault detected per unit of size 0.73
Test coverage Test coverage 0.83

Medium

Functional test coverage Test coverage 0.78
Requirements specification change
requests

Requirements specification
change requests

0.64

Error distribution Error distribution 0.63
Requirements traceability Requirements traceability 0.45
Class coupling Coupling 0.45
Class hierarchy nesting level Class inheritance depth 0.45
Number of children (NOC) Class inheritance breadth 0.45
Number of class methods Class behavioral complexity 0.45
Lack of cohesion in methods
(LCOM)

Cohesion 0.45

Weighted method per class (WMC) Class structural complexity 0.45
Man hours per major defect detected Time taken to detect and remove

faults
0.45

Reviews, inspections and
walkthroughs

Reviews, inspections and
walkthroughs

0.45

Software capability maturity model Software development maturity 0.45
Number of key classes Functional size 0.45
Number of faults remaining (error
seeding)

Estimate faults remaining in code 0.38

Requirements compliance Requirements compliance 0.52

Low

Mutation testing (error seeding) Estimate faults remaining in code 0.48
Cause & effect graphing Cause & effect graphing 0.25
Full function point Functional size 0.20
Function point analysis Functional size 0.00
Feature point analysis Functional size 0.00
Bugs per line of code (Gaffney) Estimate of faults remaining per

unit of size
0.00



6Any program, process, or body of data that specifies the expected outcome of a set of tests as applied to a
tested object.  The oracle "knows all the answers".

11

  4. PACS RELIABILITY ASSESSMENT

4.0  Overview

PACS reliability was assessed by testing the code against its operational profile.  The testing
process (see Figure 1) involved developing a test oracle6 (with Test Master [7, 8]) that was used
to generate test scripts in accordance with the operational profile.  The test scripts were then
executed using WinRunner [26] as a test harness.  The results of the tests were recorded and
used to calculate reliability.  The reliability assessment was performed during PACSs
operational stage.

 

Figure 1  Test Environment 

This chapter will discuss: TestMaster, WinRunner, the experimental setting, the operational
profile and the probability of failure assessment.

4.1  TestMaster

TestMaster is a test design tool that uses the extended finite state machine notation to model a
system [7].  TestMaster captures system dynamics by modeling a system through various
states and transitions.  A state in a TestMaster model usually corresponds to the real-world
condition of the system.  An event causes a change of state and is represented by a transition
from one state to another [8].  TestMaster enriches the typical state machine notation by
making use of notions for context, action, predicates, constraints, test information, nested state
machine models, and the path flow language.  This enrichment allows models to capture the
history of the system and enables requirements-based finite state machine notation (see Figure
2).  It also allows for specification of the likelihood that events or transitions from a state will
occur.  The operational profile may easily integrate into the model.



12

Figure 2   TestMaster Model Read_Card and Its Different Modeling Elements 

After completion of the model, software tests are created automatically with a test script
generator.  The test generator develops tests by identifying a path through the diagram from
the entry to exit state.  The path is a sequence of events and actions that traverses the
diagram, defining an actual-use scenario.  The test generator creates a test script for each path
by concatenating the "Test Information" field of the transitions covered by the path.  Since the
test harness used in this research is WinRunner, the field "Test Information" consists of
WinRunner test scripts (Figure 3).  The test script consists of:  a) statements describing the test
actions and data values required to move the system from its current state to the next state; b)
functions verifying that the state is reached; and c) checks that the system has responded
properly to the previous inputs.



13

win_activate ("dynamic.umd.edu - CRT");
type ("r < kReturn >");
type ("sEasjnYrian          555974912 < kReturn >");
Check_PINA ("GetPIN0",10,"Enter PIN","ReadPin",1);
type ("t1 < kReturn >");
Check_Timer (9,"VDPD1T",1);
type ("1 < kReturn >");
type ("t1 < kReturn >");
Check_Timer (4,"VDPD2T",1);
type ("5 < kReturn >");
type ("t0 < kReturn >");
Check_Timer (5,"VDPD3T",1);
type ("2 < kReturn >");
type ("t2 < kReturn >");
Check_Timer (3,"VDPD4T",1);
type ("5 < kReturn >");
Check_Initial ("GateOpen",10,"Please Proceed","NONE","GATE",1);
type ("t10 < kReturn >");
Case_Judge ("Ambient","NONE","Insert Card","NONE",1);

 
Figure 3   WinRunner Test Script 

TestMaster implements several test strategies such as "Full Cover", "Transition Cover" and
"Profile Cover".  The strategy used in this study is "Profile Cover".  "Profile Cover" generates a
predefined number of test cases in accordance with the specified operational profile.

4.2  WinRunner

WinRunner [26] is the test-harness used in this experiment.  It is one of Mercury Interactive's
automated testing tools for Microsoft Windows-based GUI applications.  WinRunner executes
tests by running test scripts in its own C-like Test Script Language (TSL).  TSL scripts are
generated by either recording the tests using the WinRunner record engine or by explicitly
writing them.

PACS is not a typical GUI application.  However, since it is run through a telnet session on a
Windows platform, TSLs can be written to test the GUI of the telnet application, thereby testing
the behavior of the original code.

WinRunner offers two modes for recording tests and execution:  context sensitive and analog. 
The context sensitive mode records actions on the application being tested in terms of the GUI
objects and ignores the physical location of an object on the screen.  This recording method is
suitable for extensive GUI applications.  However, as PACS is a UNIX based C++ application
lacking well-defined GUI elements, this method is not suitable.

The analog mode records and executes functions while identifying the GUI elements by their
screen co-ordinates rather than their identities.  This allows text and figures to be captured
based on the co-ordinate points of the screen.  The analog mode records mouse clicks,



14

keyboard input, and the exact coordinates traveled by the mouse.  When the test is executed,
WinRunner retraces the mouse tracks.  This method is suitable for our study because the only
input to PACS is from the keyboard and the system response is displayed on the monitor.

During test case execution WinRunner captures text from predefined coordinates of the telnet
application and compares them to their expected value.  Discrepancies are noted and reported
in a test report.  Every discrepancy reported is considered a failure of the application.  The
number of failures observed and the number of tests run are used as data for reliability
assessment.  Test report entries bear a time stamp that allows for a precise record of the time
of failure.  This information is core to the MTTF calculation procedure defined in Chapter 5. 
The time reported in WinRunner is dependent upon the platform and machine specifications. 
Thus, care needs to be taken before making comparisons between test reports generated by
WinRunner running on two different machines.  Figure 4 shows a test report generated using
WinRunner.
 
The WinRunner test report provides information about the test case number and the type of
discrepancy reported.  Test case eight is a failure because the message on the screen was
"See Officer" when it should have been "Gate Open".

Since WinRunner is run in the analog mode, it may actually fail to capture the correct text and
thus report a discrepancy where there is none.  Test results should therefore be reviewed
carefully.

4.3  Experimental Setting

The machine configuration for our experiment is as follows:

Processor Intel Pentium Pro
RAM 128 MB RAM
Processor
Speed

200 MHz

Processor  Intel Pentium Pro RAM 128 MB RAM Processor Speed 200 MHz The test
characteristics are as follows:

Total number of test
cases

200

Test Duration 7411 seconds

Total number of test cases 200 Test Duration 7411 seconds.



15

WinRunner Results - D:\WINNT\Profiles\avik\Desktop\winrunner\pacs6 
=======================================================

Expected Results Directory:  D:\WINNT\Profiles\avik\Desktop\winrunner\pacs6\expTest 
Results Name:  D:\WINNT\Profiles\avik\Desktop\winrunner\pacs6\res1               
Operator Name:  
Date:  Fri Aug 10 10:05:53 2001 
Summary:____________________
Test Result:  fail Total number of bitmap checks:0 Total number of GUI checks:  0 
Total Run Time:  01:15:59
Detailed Results DescriptionLine Event Result Details

Time --------------------------------------------------------------------------------------------------------------------------
1 start run run pacs6 00:00:00
133 tl_step --- Step: Verify Case, Status: Pass, Description:
The Case 1 is Good 00:00:20 
133 tl_step --- Step: Verify Case, Status: Pass, Description:
The Case 2 is Good 00:00:50 
133 tl_step --- Step: Verify Case, Status: Pass, Description:
The Case 3 is Good 00:01:13 
133 tl_step --- Step: Verify Case, Status: Pass, Description:
The Case 4 is Good 00:01:39
133 tl_step --- Step: Verify Case, Status: Pass, Description:
The Case 5 is Good 00:01:57 
133 tl_step --- Step: Verify Case, Status: Pass, Description:
The Case 6 is Good 00:02:15 
133 tl_step --- Step: Verify Case, Status: Pass, Description:
The Case 7 is Good 00:02:41 
Because of GATE 00:03:03 
135 tl_step --- Step: Verify Case, Status: Fail, Description:
The Case 8     User Message --- Case 8:  State SeeOffic Should be:
GateOpen Because of GATE 00:03:01
15 User

Message
--- Case 8: Display See Officer Should be  Please

Proceed 8 failed 00:03:08 
133 tl_step --- Step: Verify Case, Status: Pass, Description:
The Case 9 is Good 00:03:31 
5726 stop run fail        pacs6   01:15:59

Figure 4   WinRunner Test Report

4.4  Operation Profile

The operational profile of the system is a major deciding factor in assessing its reliability.  The
operational profile is defined as the set of probabilities that define the behavior of the system [27]
thereby reflecting the way a system behaves in the real world.  The operational profile for PACS
is given in Table Table 3 and was established by PACS users.



16

Table 3   PACS' Operational Profile

No Description of the Event Probability

  1. Entering a good card: A good card is card that has the card data in the
correct format and has data that is in the database. In other words this event
reflects the number of times a genuine card is being entered in the system.

0.97

  2. Entering a good PIN: A good PIN is the event that reflects that the four
digits of the PIN are correct and match the entry in the database.

0.8

  3. Entry of the 1st digit within time: The allowed time for entry of the first digit
of the PIN is 10 seconds. 

0.98

  4. Entry of subsequent digits of PIN within time: The allowed time is 5
seconds.

0.97

  5. Erasure of a PIN digit: The PIN digits are erased whenever the keys # or
* are pressed.

0.001

  6. User able to pass within the stipulated time after opening of gate. 0.99

  7. Guard is requested for extra time. 0.01

  8. Guard allows extra 10 seconds. 0.01

  9. Guard Override: This event refers to the event of the guard over riding the
verdict of the system. The system passes control to the guard after three
failed attempts of entry of PIN/ Card. The message "See Officer" is
displayed on the LED and the guard has the ability to allow the user to get
in (over ride) or reset the system to its initial state.

0.5

10. Hardware Failure: Although failure of any register from R1 to R11 will
induce a system failure, only failure of register R5 and combined failure of
registers R1, R2, R3, R4, and R9 results in a failure of level 1. The failure
probability is calculated assuming probability of failure of a typical register
to be 0.001 per demand.

0.001

    



17

4.5  Reliability Assessment

Reliability is calculated as [6]

                                                             (1)R n r
n

�
� �

�

1
1

where
n is the number of runs, and
r is the number of failures.

The reliability assessed against the operational profile given in Section 4.4 is:

                                               (2)R �
� �

�

�
499 42 1

499 1
0 916.



18

 5. RELIABILITY PREDICTION SYSTEMS

5.0  Overview

The following chapter establishes the RePSs for the measures selected in this study.  It also
provides the raw data necessary for the estimation of the measure and the corresponding
reliability estimation based on the RePSs.  Reliability in this study is taken to be the run
reliability, i.e., probability of success per demand and noted ps.

A RePS is defined in [34] as, "a complete set of software engineering measures through which
software reliability can be predicted".  In the same reference, the measure on which RePS
construction is based is termed the "root" of the RePS. Other measures within the RePS are
defined as "support" measures.

Given these definitions, ps can be naturally represented by Equation 3 where S stands for the
RePS and f stands for a model bridging the gap between ps and the software engineering
measures.  The function f(S) as a whole is termed "software reliability model" in the literature.

                                                             (3)� �p f Ss �

In essence, if there is no objection to neither the notion of RePS, nor with the possibility that a
RePS can be built from any software engineering measure, then it can be shown that f and S
will guarantee perfect estimations of ps.  However building such (complete) RePSs in certain
cases (i.e., for some measures) requires considerable advance to the current state of the art. 
In this chapter effort is limited to constructing (sometimes incomplete) RePSs, i.e. functions f*
and sets S* such that f*(S*) results in an approximation of ps.  In the context of a validation
study, the constructs should reflect the current state-of-the-art, i.e., be based on validated tools,
techniques and methodologies found in published literature.

This chapter establishes six f*s and S*s for the six measures selected in this study.  More
specifically, the measures "Mean time to failure", "Defect density", "Test coverage",
"Requirements traceability", "Function point" and "Bugs per line of code (Gaffney estimate)" are
examined in detail.  Each measure is first formally defined, and then the measurement process
and measurement procedures are given next.  Finally the RePSs and f*s are established and
reliability is assessed.



7  The original user's requirements [35] specify that PACSs' failures should be classified into three severity
levels (1, 2 and 3) defined as follows:
"A Level 1 failure of the software is a condition or conditions when the software is hung, valid user cards and valid
PINs are not processed, invalid users have access, or the guard cannot over-ride the system.  In summary a Level 1
failure is one which brings the system to a critical state. Level 2 failures on the other hand, are less severe but
manifest themselves as the system not completely working properly.  The guard can override these non-critical
malfunctions and still keep the system running.  Anomalies such as an entrant carrying a large package who needs
extra passage time could constitute conditions for a Level 2 system failure.  Thus, a level 2 failure has an operational
work-around.  A level 3 failure is a "Don't care" failure but one which will be fixed on the next release of the software. 
A documentation error would be an example of a Level 3 failure."

This study is concerned with safety and thus with high impact failures.  Hence measurements reflect solely
Level 1 failures.  For instance, the only failures used in the computation of MTTF are Level 1 failures.

8The number of test cases run is 500. Testing ends at a system time of 53888 seconds since the start of the
test procedure. 

9It should be noted that the MTTF estimation is dependent on the test environment described in Chapter 4. 
The implication of this dependence on reliability estimation will be discussed later in Section 5.1.2 .

19

5.1  Mean Time To Failure (MTTF)7

5.1.1  Definition

The MTTF for any system can be calculated as follows: [25]

                                                              (4)MTTF t
rr
r

�

where
MTTFr is the MTTF estimation based on r failures,
tr is the cumulative failure time in seconds, and
r is the number of failures during the time period tr.

5.1.1.1  Measurement

Using the operational profile and the test set-up8 defined in Chapter 4 and Equation 4, the raw
failure time data and MTTFr is obtained and provided in Table 4.

Given the data in Table 4, PACSs MTTF9 is 1267.6 seconds.

5.1.2  RePS Construction and Reliability Estimation

The measure "Mean time to failure" describes the average time between adjacent failures.  The
probability of success per demand can be derived directly from this measure if it is assumed
that the failure rate is constant.  Below is a derivation of the relationship between pS and MTTF.

Since

                                                            (5)� �
1

MTTF



20

Table 4   MTTF Data

Failure
Number

(r)

Test
Case

Number

Cumulative
time in

seconds (tr)
MTTFr

Failure
Numbe

r (r)

Test
Case

Number

Cumulative
time in

seconds (tr)
MTTFr

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

   3
   8
 22
 46
 77
103
108
113
151
156
160
168
172
177
192
227
230
236
238
246
248

    333
    878
  2345
  4894
  8085
10721
11218
11855
15899
16464
16922
17737
18168
18697
20332
24131
24527
25120
25349
26242
26575

  333.0
  439.0
  781.7
1223.5
1617.0
1786.8
1602.6
1481.9
1766.6
1646.4
1538.4
1478.1
1397.5
1335.5
1355.5
1508.2
1442.8
1395.6
1334.2
1312.1
1265.5

21
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

257
270
284
290
295
305
318
319
340
355
360
361
369
371
380
396
440
446
476
482
494

27403
28794
30265
30928
31464
31984
33849
33959
36175
37839
38374
38479
39323
39566
40538
42364
47275
47886
51207
51888
53239

1245.6
1251.9
1261.0
1237.1
1210.2
1184.6
1208.9
1171.0
1205.8
1220.6
1199.2
1166.0
1156.6
1130.5
1126.1
1145.0
1244.1
1227.9
1280.2
1265.6
1267.6

where
λ is the failure rate, and
MTTF is the mean time to failure.

For a constant failure rate, the reliability at time t given there is no failure at time 0 is:

                                                           (6)� �R t e t
�

��

where t is the time at which reliability is estimated.

On the other hand, the number of demands over a period of time t is given by:

                                                                  (7)n t� �

where
ρ is the number of demands per unit of time in seconds, and
n is the number of demands.



10Both ρ and MTTF are dependent upon the test environment (i.e. processor speed). Fortunately, these dependencies
cancel out in the estimation of pS.

21

Thus

                                                                (8)t n
�
�

The probability of success per demand10 can be obtained by substituting Equation 5 and
Equaton 8 for parameters ( and t in Equation 6. Please note that n = 1 for the per demand
case.

                                                              (9)p
MTTFs � �
�

�

�
�

�

�
	exp 1




It is important to note that parameters ρ and MTTF in Equation 9 are two statistically dependent
random variables.  The inverse correlation is due to the fact that when the software fails during
its execution, the time required to complete the current demand is shorter.  Hence the number
of demands increases when the MTTF decreases.  Alternatively the number of demands
decreases when the MTTF increases  (see also Equation 4 and Equation 7).  The correlated
data for parameters MTTF and ρ is shown in Table 5.  The probability of success per demand
corresponding to the 42 failures is 0.91849.



22

Table 5   MTTFi and the Corresponding values of ρr  and psr

Failure
Number

(r)

Test Case
Number

(n)

Cumulative
time in

seconds
(tr, t)

MTTFr ρr ps,r

  1
  2
  3
  4
  5
  6
  7
  8
  9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

    3
    8
  22
  46
  77
103
108
113
151
156
160
168
172
177
192
227
230
236
238
246
248
257
270
284
290
295
305
318
319
340
355
360
361
369
371
380
396
440
446
476
482
494

   333
   878
  2345
  4894
  8085
10721
11218
11855
15899
16464
16922
17737
18168
18697
20332
24131
24527
25120
25349
26242
26575
27403
28794
30265
30928
31464
31984
33849
33959
36175
37839
38374
38479
39323
39566
40538
42364
47275
47886
51207
51888
53239

  333.0
  439.0
  781.7
1223.5
1617.0
1786.8
1602.6
1481.9
1766.6
1646.4
1538.4
1478.1
1397.5
1335.5
1355.5
1508.2
1442.8
1395.6
1334.2
1312.1
1265.5
1245.6
1251.9
1261.0
1237.1
1210.2
1184.6
1208.9
1171.0
1205.8
1220.6
1199.2
1166.0
1156.6
1130.5
1126.1
1145.0
1244.1
1227.9
1280.2
1265.6
1267.6

0.0090090
0.0091116
0.0093817
0.0093993
0.0095238
0.0096073
0.0096274
0.0095318
0.0094975
0.0094752
0.0094552
0.0094717
0.0094672
0.0094668
0.0094432
0.0094070
0.0093774
0.0093949
0.0093889
0.0093743
0.0093321
0.0093785
0.0093770
0.0093838
0.0093766
0.0093758
0.0095360
0.0093947
0.0093937
0.0093988
0.0093819
0.0093814
0.0093817
0.0093838
0.0093767
0.0093739
0.0093476
0.0093072
0.0093138
0.0092956
0.0092892
0.0092789

0.71653
0.77880
0.87253
0.91672
0.93713
0.94341
0.93724
0.93165
0.94214
0.93791
0.93356
0.93106
0.92720
0.92395
0.92485
0.93194
0.92875
0.92657
0.92327
0.92192
0.91881
0.91796
0.91834
0.91897
0.91740
0.91564
0.91528
0.91572
0.91310
0.91555
0.91638
0.91495
0.91264
0.91198
0.90997
0.90961
0.91080
0.91726
0.91627
0.91940
0.91846
0.91849



11Please refer to Chapter 4 for a definition of severity levels.

12By the current version of the software meant the version of the software during test.

23

5.2  Defect Density

5.2.1  Definition

Defect density is defined in this study as the number of defects remaining unresolved at the
testing stage divided by the number of lines of code in the software.  The defects were
discovered by independent inspection.  The inspection process followed is discussed below.

To calculate defect density, severity levels for defect designation11 are established first. In this
particular case, all defects discussed below belong to the level 1 category.  Then the following
primitives should be calculated:

i An index reflecting the development stage.  A value of 1 represents the
requirements stage, a value of 2 represents the design stage and a value of
3 represents the coding stage. 

j The index identifying the specific inspector.  This index ranges from 1 to N. 
Di, j The number of unique defects detected by the jth inspector during the ith

development stage in the current version of the software12. 

DFl, k The number of defects found in the lth stage and fixed in the kth stage. 
1 � l < k � 3.  

DUm The number of defects found by exactly m inspectors and remaining
unresolved in the code stage.  The value of m ranges from 2 to N.  

N Total number of inspectors. 
KLOC The number of source lines of code (LOC) in thousands.  The LOC counting

rule is defined in Table 4.3 in [20] (pp. 81)  

Given these primitives, "Defect density", DD is given as:

                     (10)

� �

DD

D DF DU m

KLOC

i j

N

l k m

�

� � ��� ���
�

, ,
j = 1i = 1 m = 2k > 1l = 1

3 333
1

Please note that the numerator in Equation 10 is the number of defects discovered by the
inspection but remaining unresolved in PACS.

5.2.2  Measurement

The measurement of defect density is formalized as follows.



13By "mistake" it refers to cases where a defect found by inspection was determined not to be a defect per
se.  This determination could be made easily since one of the two moderators was a user of the system.

24

5.2.2.1  Requirements Inspection

Products Under Inspection

1. Requirements Spec for Personnel Access Control System [35];
2. PACS Requirements Specification [3].

Participants:

1. Three Inspectors;
2. Two Moderators.

The inspectors inspected the products independently and recorded all ambiguous, incorrect, or
incomplete statements and their particular locations.  The moderators scrutinized the logs and
corrected mistakes made during the inspection process13.  The values of Dl, j were obtained
during this stage.

5.2.2.2  Design Inspection

Products Under Inspection

1. PACS Design Specification [2]

Participants:
  

1. Three Inspectors
2. Two Moderators

The inspectors inspected the products independently and recorded defects (for instance, any
ambiguity, incorrectness, inconsistency, or incompleteness).  During the inspection process, the
inspectors referred to the following documents:  1) the Requirements Spec for Personnel
Access Control System; 2) PACS Requirements Specification; and 3) The list of defects
generated in the previous inspection cycle.

The moderators met and reviewed all defects discovered in the design stage, and corrected the
mistakes made during the inspection.

The inspectors identified the defects found by the requirements inspection and fixed in the
design stage (D1, 2) as well as the defects that originated during the design process (D2, j).

5.2.2.3  Source Code Inspection

Products Under Inspection

1. PACS Source Code [4] 



25

Participants:

1. Three Inspectors
2. Two Moderators

The inspectors inspected the PACS source code independently and recorded defects.  During
this inspection process the inspectors used the following documents:  1) Requirements Spec for
Personnel Access Control System; 2) PACS Requirements Specification; 3) PACS Design
Specification, and 4) A list of defects generated during the previous inspection cycle.

The moderators met and reviewed all defects discovered in the code stage, and corrected the
mistakes made during the inspection.

The inspectors identified the number of defects found by the requirements inspection that were
fixed in the code (DF1, 3), the number of defects found by the design inspection that were in the
code (DF2,3), and the number of defects that originated in the code D3, j.

5.2.2.4  Lines of Code Count

The number of source lines of code was counted by one of the inspectors using the counting
rules defined in [20].

5.2.3  Results

The values of the different primitives required to evaluate defect density are as shown in Table
6 through Table 9:

Table 6   Values of the Primitives Di, j

Di, j
Development Stage ( j )

Requirements Design Code

In
sp

ec
to

r 
( i

 ) 1 5 4 1

2 3 7 3

3 0 3 1



26

Table 7   Values of the Primitives DFl, k

DFl, k

Development Stage During which
Defects Were Fixed

Requirement
s Design Code

D
ev

el
op

m
en

t
St

ag
e 

D
ur

in
g

w
hi

ch
D

ef
ec

ts
 w

er
e

In
tr

od
uc

ed

Requirements 0 0 5

Design 0 0 4

Code 0 0 0

Table 8   Values of the Primitives DUm

m DUm

3 3
2 3

Based on these results, the value of the numerator is obtained in Equation 10:

            (11)

� �

DD

D D DU m

KLOC KLOC

i j

N

i j m

�

� � �

�

�� �� �
�

, ,
j = 1i = 1 l = kl = 1 m = 2

3 33 3
1

9

Table 9 the number of lines of code.

Table 9   Primitive LOC

LOC 768

Therefore
DD  = 9 defects / 678 LOC = 11.72 defects/KLOC.

Table 10 gives a detailed description of the unresolved defects found during inspection.



14This quantity is the exposure ratio of the given defect per se.

27

Table 10   Unresolved Defects Leading to Level 1 Failures Found During Inspection

Defect ID Description
10 If the officer resets PACS, what happens to the door?  Remains

closed or opened?
13 The statement "card readable" is not defined anywhere.
36 10 seconds proceeding time constraint was not implemented in

PACS.
67 10 seconds constraint between card swipe and first PIN digit entry

was not implemented in PACS.
68 5 seconds constraint between the adjacent PIN digits was not

implemented in PACS. 
42 If the user cannot pass the gate in 10 seconds then after this user

passes, what happens to the door?  Is it locked or does it remain
open?

110 The passenger needs 10 seconds to pass through the gate.  From
which moment does one count the 10 seconds?

38 Register failure was not handled in PACS.
39 Turnstile failure was not taken into account

5.2.4  RePS Construction and Reliability Estimation

Software reliability is essentially determined by the defects remaining in the software.  A defect
will lead to a failure if it meets the following constraints:  first, it needs to be triggered
(executed); second, the execution of this defect should modify the state of the execution; and
three, the abnormal state-change should propagate to the output of the software and manifest
itself as an abnormal output, in other words, as a failure [36, 38].

Voas modeled such failure mechanisms using the PIE concept in [38].  The PIE model was
initially proposed as a dynamic technique for statistically estimating the testability of software
against a given set of test cases.  The acronym PIE corresponds to the three defect
characteristics identified above: the probability that a particular section of a program (termed
"location") is executed (execution noted as E); the probability that the execution of such section
affects the data state (infection noted as I); and the probability that such an infection of the data
state affects program output (propagation noted as P). Therefore, the failure probability of the
software (pf)14 given that a specific location contains a defect is:

                                                          (12)p P I Ef � � �

where P, I and E are evaluated for this particular defect at a given location.

 



28

The PIE model relies on the following assumptions [38]:

1. The system under study is almost correct.  This means that the software can pass the
compilation stage and is very close to the correct version of the specification
both semantically and syntactically.

2. A distribution of inputs, D, is available from which P, I and E can be estimated.
3. The input is sampled from the input domain ∆.
4. The cardinality of ∆ is effectively infinite for sampling purposes.  Or if it is finite, it

exceeds what can be exhaustively tested.

Table 10 gave the unresolved defects that were found by inspection of PACS.  Reliability can
be estimated for the unresolved defects using the PIE model:

                                                (13)� � � � � �p P i I i E if
i

� � ��

where P(i), I(i), E(i) is the values of P, I and E for the ith defect, respectively.

The PIE model provides algorithms to estimate the values of P, I and E.  However, the original
model does not take dependency and coincidental cancellation among defects into account.

Two defects are dependent when they are not mutually exclusive.  An example of dependency
is the existing dependency between defects 36, 42, 47 in Table 10.  They describe a defect
related to a 10-second constraint on passage through the gate from different perspectives. 
Each time the 10-second limit is violated, these defects are triggered and failures occur.  The
probability that the user will exceed the 10-second constraint can be determined from the
operational profile and is denoted as p10 sec.  If it is assumed that the events and the probabilities
that these three defects lead to failures are E36, E42, E47 and p36, p42, p47, respectively, the
overall failure probability contribution related to the 10-second constraint Pr(E36 � E42 � E47) is
given by:  Pr(E36 � E42 � E47) = p36 = p42 = p47  = p10 sec.

Coincidental cancellation relates to the existence of interactions between defects.  It is
described as a phenomenon whereby a defect cancels the propagation of a previous defect. 
For instance, assume that a first defect is x = - a2 instead of x = (- a)2 and that at some location
after this statement a second defect is y = b - x instead of y = b + x.  Then the abnormal state
resulting from the first defect is canceled by the presence of the second defect.

A simple, convenient and effective method should be proposed to solve Equation 13 when such
dependency and coincidental cancellation occur.  Such a method is described in the next
section.

5.2.4.1  Method for Estimation of PIE

The PIE method proceeds in three stages:

1. Construction of a finite state machine representing the users requirements and
embedding user's profile information.



15An "I/O path" is "a path in the finite state machine model that starts from an input state and ends with an
output state."

29

2. Mapping of the defects to the state machine model and actual tagging of the
states and transitions.  In this step, the defect identified in Table 10 is mapped
directly to a transition of the finite state machine.  A corresponding flag is set in
the "TEST INFO" field of the model (see Figure 6).

3. Execution of the state machine model to evaluate the impact of the defects. All
I/O paths15 are generated.  The I/O paths with tagged defects are then identified
and their associate probabilities are extracted.  The sum of such probabilities is
the failure probability per demand (pf). This assumes that P and I are equal to 1. 
If this assumption does not hold, the finite state machine model can be modified
(refined to a lower level of modeling) in such manner that once again P and I
equal 1.

5.2.4.2  The Estimation of the Failure Probability

The probability of a specific I/O path is:

                                                 (14)p ppath e

n

i ji

i
� �

j = 1
where 

 is the probability that the ith I/O path is executed,ppathi

 is the conditional likelihood of the jth transition in the ith I/O path, andpe ji

 ni is the number of total transitions in the ith I/O path.

If all defects found by inspection can be mapped to locations in the finite state machine model
then the probability that PACS will fail given the defects identified in Table 10 is given by:

                                              (15)pf pathi
i

�

�

�        p
 path   DEFpath

where DEFpath is the set of I/O paths containing defects identified in Table 10.

Figure 5 and Figure 6 are extracts of the TestMaster Model.  Figure 5 is a sub-model depicting
the execution of the "Enter PIN" function found in PACS.  The input of the PIN falls into two
categories: either "Good PIN" or "Bad PIN" corresponding to different likelihood functions given
in the operational profile.  Then the time delay for the first digit can be either less than 10
seconds or greater than 10 seconds.  This 10-second constraint was not implemented in the
version of PACS being tested (see defect 67 in Table 10).  The defect can be easily mapped to
the transition between states "PreEntering" and "FirstDigitOut10s".  The mapping is illustrated
in Figure 6.

In Figure 6 the conditional probability of this transition is 0.02 from the "ACTION" field and from
the "TEST INFO" that a literal "Path failed" is given to indicate this path will lead to a failure. 
The probability of this path is given by the variable "Prob" in the "ACTION" field at the end of



30

this path.  Accordingly, all paths containing the literal Path failed constitute the set DEFpath
defined in Equation 15.  The value of  is determined by the value of the variable "Prob" inppathi

the "ACTION" field at the end of the path.

Figure 5 Finite State Machine Model for Enter PIN

5.2.4.3  Result

The estimation of PACSs' probability of failure per demand based on the defect density RePS is
0.07757.  Hence ps = 1 - 0.07757 = 0.92243.



31

 
Figure 6   Parameters of the Transition Between the State PreEntering and FirstDigitOut10s

5.3  Test Coverage

The software engineering literature (see for instance [24]) defines multiple test coverage
measures such as block (also called statement) coverage, branch coverage and data flow
coverage.  For this study, statement coverage was selected because the other test coverage
measurements could not be carried out for PACS.  The measurement of statement coverage,
and the corresponding reliability prediction are discussed below. 

5.3.1  Definition

Statement coverage is defined as [24]:

                                     (16)Statement Coversge =  LOC
LOC

Tested

Total
where

LOCTested is the number of lines of code implemented in PACS that are being
   executed by the test data listed in the test plan [5], and

LOCTotal is the total number of lines of code [4].

5.3.2  Measurement

The PACS requirements specifications [3, 35], the PACS source code [4] and the PACS test
plan [5] were used to measure statement coverage. 



16Defect coverage is defined in [24] as the ratio: number of defects discovered by the test cases over
number of defects in the code. 

32

As will be described later in Section 5.3.4 , the value of statement coverage can be used to
estimate the value of defect coverage16.  The number of defects remaining in PACS can then
be estimated from the defect coverage and number of defects found using Equation 25. 
However, because the number of defects found for the implemented PACS (the denominator in
Equation 25) is 0, a corrected measurement needs to be performed to guarantee that this value
is not equal to 0.

In the test plan [5], the fact that a couple of functions specified in the requirements had not
been implemented was explicitly addressed.  These constitute defects discovered through test. 
However, because the functions were not implemented, it is not known what portion of code
these would constitute and hence what portion of code was actually covered.  The only way
around this issue is to calculate an equivalent line of code count for these unimplemented
functions.  This can be performed by:  1) counting the number of function points corresponding
to the missing functionalities, 2) using documented backfiring rules to calculate an equivalent
line of code count for the missing functionalities.

Following this discussion, Equation 16 needs to be modified to take the missing functions into
account.  This yields: 

                            (17)Statement Coverage =  LOC + LOC
LOC + LOC

Tested Miss

IMPL Miss

where
LOCMiss is the number of lines of code for the missing functionalities but covered

                                    by the test plan, and
LOCIMPL is the number of lines of code implemented.

Equation 17 is a precise estimation of statement coverage reflecting missing functions. 
However, since the functions are missing, LOCMiss cannot be evaluated directly.

According to [21], the number of lines of code of software is empirically proportional to the
number of function points (Backfiring rule):

LOC = k * FP                                                        (18)

where
LOC is the number of lines of code in the software,
k is a coefficient, dependent on the specific programming language used, and
FP is the number of function points contained in the software.

If the LOC terms in Equation 17 are replaced with Equation 18, it follows that:



33

                            (19)Statement Coverage =  LOC + k FP
LOC + k FP

Tested Miss

IMPL Miss

�

�

where FPMiss is the number of function points corresponding to the missing portion of PACS that
has been tested by test data provided in the test plan.

5.3.3  Test Coverage Measurement Results

The function point count for the implemented PACS (i.e. without the missing functions) is
provided in Table 11 through Table 13.

Table 11   PACS's Function Point Count:  General System Characteristics

General System
Characteristics

DI

Data Communications 0
Distributed Processing 1
Performance 0
Heavily Used Configuration 0
Transaction Rates 0
On-Line Data Entry 0
End-User Efficiency 1
On-Line Update 0
Complex Processing 0
Reusability 0
Installation Ease 0
Operational Ease 0
Multiple CPU Sites 0
Facilitate Change 0
Total Degree of Influence 2
Value Adjustment Factor 0.67



34

Table 12   PACS's Function Point Count:  ILF and EIF

ILF or EIF Descriptions
ILF EIF

DET RET # LVL DET RET # LVL
Card.val system
database

< 50 1 1 L

Audit log 5 2 1 L
Message ILF < 20 3 1 L
System clock < 50 1 1 L
Internal counter < 50 1 1 L

Table 13   PACS's Function Point Count:  EI, EO, EQ 

Descriptions

Processes External Inputs External
Outputs

C
A
L
C

R
E
P
O
R
T

C
O
N
T
R
O
L

A
D
D

M
O
D
I
F
Y

D
E
L
E
T
E

I
N
Q
U
I
R
Y

E
I 
D
E
T

F
T
R

N
u
m
b
e
r

L
e
v
e
l

E
O 
D
E
T

F
T
R

N
u
m
b
e
r

L
e
v
e
l

Entrant card data 1 4 5 1 A

Message to Officer 1 4 5 1 A

Card detection 1 1 0 1 L

Enter PIN 1 4 6 1 A

Open/Close gate 1 1 > 3 1 A

Open gate input 1 3 4 1 A

Guard override input 1 1 > 5 6 1 H

Guard reset 1 5-15 6 1 H



17The value of k is given by k= (LOC of the implemented PACS / Number of Function Points of the
Implemented PACS).

18The PACS linear execution time was simulated by creating a linear code (without loop) of 71 lines of code
using C++. The statements in this piece of code followed the same pattern as PACS. By pattern it means coding
style and frequency at which a type of statement appears. The average execution time of this code is 0.0138s. Since
the number of lines of code for PACS is 768, the average linear execution time for PACS is 0.0138 * 768 / 71 =
0.149s.

35

The total unadjusted function point count is 70 and the value adjustment factor is 0.67. 
Consequently, the adjusted function point count is 70 (0.67) = 46.9.

The addition of the missing functions to the implemented PACS contributes nothing more to the
general system characteristics.  To the unadjusted function point calculation, it adds two
additional low-level ILFs (the corresponding unadjusted function point count is 14)
corresponding to MRL5, MRL17, MRL18 and MRL24.  The adjusted function point count is thus:
14 (0.67) = 9.38.

The primitives and the value of statement coverage are presented in Table 14.

Table 14   Measurement Results for Statement Coverage 

LOCTested 718
LOCIMPL 768
FPMiss 9.38
k17 16.4
Statement Coverage 94.6%

5.3.4  RePS Construction and Software Reliability Estimation

Malaiya et al. [23] suggested the following expression for the failure intensity λ:

                                                            (20)� �
K
T

N
L

where 
K is the value of the fault exposure ratio during the nth execution.  The average
   value of K is 4.20 × 10-7 failure per defect [27],
TL is the linear execution time, defined in [23] as the product of the number of
    lines of code and the average execution time of each line.  The linear
    execution time for PACS is 0.149s18, and
N is the number of defects remaining in the software.

And the probability of n successful demands ps(n) is given as:



36

                                                    (21)� � � �p n es
T n

�

��

where T(n) is the duration of n demands. It is given by:

T(n) = τ * n                                                           (22)
where 

τ = 1/ρ is the average execution time per demand.  The value of this quantity for
PACS is 109.8s, and

n is the number of demands.

Replacing λ and T(n) in Equation 21 with Equation 20 and Equation 22:

                        (23)� �p n e e es

K
T

N n KN n K N nL
� � �

�
�

� � �

�
109 8
0 149 736 9

.
. .

Therefore the probability of success per demand ps (n = 1) is given as:

                                                       (24)p es
KN

�
�736 9.

The number of defects remaining in the software N is:

                                                                (25)N N
C

�

0

0

where
    N0 is the number of defects found by test cases provided in the test plan, and
    C0 is the defect coverage, which is defined in [24] as the fraction of defects found by   
        test cases given in the test plan.

Malaiya et al. investigated the relationship between C0 and statement coverage.  In [24], he
proposes the following relationship:

                                  (26)� �� �� �C a a a C0
0 1 2 11 1� � �ln exp

where
a0, a1, a2 are coefficients, and
C1 is the statement coverage.

The coefficients can be estimated from field data.  Since no actual data is available to obtain
the values of a0, a1, and a2, coefficients provided in [24] were used.  Figure 7 depicts the
behavior of C0 (i.e. Equation 26) for the data sets 2, 3, and 4 given in [24]. 
 
Figure 7 shows that the relationship between statement coverage and defect coverage based
upon Data Set 3 is similar to that based upon Data Set 4.  However, the defect coverage



19Malaiya et al mentioned five data sets in [24] but only provided parameters a0, a1, a2 for Data Sets 2, 3,
and 4.

37

behavior based upon Data Set 2 is unexplainable:  it is not valid if the test coverage is over 0.93
because the defect coverage would be greater than 1.0.  Based on this observation the
relationship based upon Data Set 2 was not used.

Statement Coverage vs Defect Coverage

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Statement Coverage

D
ef

ec
t C

ov
er

ag
e

DS2 DS3 DS4

Figure 7   Fault Coverage vs. Test Coverage

Table 15 provides the defect coverage and the corresponding total number of defects
remaining in PACS given the parameters in [24]19.

 Table 15   Defects Remaining vs Test Coverage

Data Set 3 Data Set 4

Number of defects found
through test  (N0) 4 4

C1 94.6% 94.6%
C0 84.9% 81.1%
N 5 (4.7) 5 (4.9)



38

The determination of K needs further discussion.  The fault exposure ratio for the four defects
identified during testing can be precisely estimated using the finite state machine model
described in Section 5.2.4.  As for the additional, unknown defects determined using Equation
25, they are more likely to follow the fault exposure characteristic of the four known defects
than the average value given in Musa [27] since this estimate is specific to the application
considered and is so different from the value given by Musa.  Using Equation 24:

                                      (27)
� �K

p
N

f
�

� �

�

� �
�

ln
.

.
1

736 9
2 70 10 5

where
pf is the probability of failure per demand corresponding to the known defects.  This
    value is given by the PACS finite state machine model and is 0.07657, and
N is the number of known defects (N = 4).

The table below lists the probabilities of success per demand (ps) given Table 15.

Table 16   Reliability Estimation Based on Test Coverage

Data Set 3  Data Set 4

ps 0.909 0.907

5.4  Bugs per Line of Code (Gaffney Estimate)

5.4.1  Definition

Gaffney [18] established that the number of defects remaining in the software (F) could be
expressed empirically as a function of the number of line of codes.  That is,

                                        (28)� �F
N

�� 4.2 + 0.0015 Si
43

i = 1

where
 i is the module index,
 N is the number of modules, and
 Si is the number of lines of code for the ith module.

In the particular case of PACS, and for OO design/programming in general, the traditional
notion of module as a sub-routine does not apply.  However, because a module is defined as
"an independent piece of code with a well-defined interface to the rest of the product [33]", and
also because this definition is satisfied by the notion of class, the notion of "module as a



20In practice the empirical correlations established by Gaffney hold for object oriented design needs to be
verified.   However, since these correlations represent the state-of-the-art in this matter these will be used.

39

subroutine" can be substituted by the notion of "module as a class"20.

5.4.2  Measurement

The table below (Table 17) lists PACSs modules (classes), the corresponding number of lines
of code and the corresponding value of Si.  The total number of defects remaining in the PACS
source code approximates to 66 (rounded up to an integer).

Table 17   Bugs Per Line of Code Results

Module/Class LOC Si

Main 69 4.6
Display 23 4.3
Terminal 15 4.3
ResetUnit 26 4.3
Turnstile 21 4.3
SecurityTerminal 17 4.3
IDCard 42 4.4
Keyboard 28 4.3
CardReader 5 4.2
EntryTerminal 126 5.1
CardDB 40 4.4
Registers 19 4.3
Failure 14 4.3
KeyboardFailure 11 4.2
AuditLog 23 4.3

Total 479 65.6

5.4.3  RePS Construction and Reliability Estimation

Equation 21 with k = 4.2 × 10-7 can then be applied to the number of defects remaining to
estimate the reliability of PACS.  The value of ps is as follows:

 ps = 0.999972.



40

5.5  Function Point

5.5.1  Definition

Function point is designed to determine the functional size of the software.  This measure can
be used starting in the requirements specification phase and throughout the remainder of the
software life cycle as a basis to assess software quality, costs, documentation and productivity. 
Function points have gained acceptance as a primary measure of software size.  Function
points measure the size of an entire application as well as that of software enhancements,
regardless of the technology used for development and/or maintenance.
 
Function point measures software size by counting five distinct software attributes.  Two of
these address the software program data requirements of an end user and are referred to as
Data Functions (items 1 and 2 below).  The remaining three address the users need to access
data and are referred to as Transactional Functions (items 3, 4, and 5 below).
  

1. Internal Logical Files, ILF (logical groups of data maintained in an application)
2. External Interface Files, EIF (logical groups of data used by one application but

maintained by another application)
3. External Inputs, EI (which maintain internal logical files)
4. External Outputs, EO (reports and data leaving the application)
5. External Inquiries, EQ (combination of a data request and data retrieval)

Table 18   Computing Function Point

Measurement
Parameters Count Low Average High Weighted Value

 (Count x Weight)
Number of Internal
Logical Files 7 10 15

Number of
External Interface
Files

5 7 10

Number of
External Inputs 3 4 6

Number of
External Outputs 4 5 7

Number of
External Inquires 3 4 6

Total Function Point Count:

These five attributes are rated as having low, average, or high importance in the analysis.  The
rating matrix for inputs is shown in Table 18 and illustrates the rating process.  The importance
of each component is thus weighted according to Table 18.



41

The total Function Point count is based upon an Unadjusted Function Point Count that is
defined as follows:

Unadjusted Function Points = (Internal Logical Files × Weight) +
(External Interface Files × Weight) +
(External Inputs × Weight) +
(External Outputs × Weight) +
(External Inquiries × Weight).

The Unadjusted Function Point Count is modified by a Value Adjustment Factor that assesses
the design characteristics of the software.  The Unadjusted Function Point count is multiplied by
the Value Adjustment Factor.  This factor considers the system's technical and operational
characteristics and is calculated by answering questions about the following 14 software
characteristics:

1. Data Communications.  The data and control information used in the
application are sent or received over communication facilities.

2. Distributed Data Processing.  Distributed data or processing functions are a
characteristic of the application within the application boundary.

3. Performance Application.  Performance objectives, stated or approved by the
user, in either response or throughput, influence (or will influence) the design,
development, installation and support of the application.

4. Heavily Used Configuration.  A heavily used operational configuration,
requiring special design considerations, is a characteristic of the application.

5. Transaction Rate.  The transaction rate is high and influences the design,
development, installation and support.

6. On-Line Data Entry.  On-line data entry and control information functions are
provided in the application.

7. End-User Efficiency.  The on-line functions provided emphasize a design for
end-user efficiency.

8. On-Line Update.  The application provides on-line update for the internal logical
files.

9. Complex Processing.  Complex processing is a characteristic of the
application.

   10.  Reusability.  The application and the code in the application have been
specifically designed, developed, and supported to be usable in other
applications. 

   11.  Installation Ease.  Conversion and installation ease are characteristics of the
application.  A conversion and installation plan and/or conversion tools were
provided and tested during the system test phase.

   12.  Operational Ease.  Operational ease is a characteristic of the application. 
Effective start-up, backup, and recovery procedures were provided and tested
during the system test phase.

  13.  Multiple Sites.  The application has been specifically designed, developed, and
supported for installation at multiple sites for multiple organizations.

  14.  Facilitate Change.  The application has been specifically designed, developed
and supported to facilitate change.



42

The Function Point Counting Practices Manual gives specific guidelines for determining the
"Degree of Influence" from 0 to 5 for each of fourteen "general system characteristics".  Each of
these factors is scored based on their influence on the system being counted.  The resulting
score will increase or decrease the Unadjusted Function Point count by 35%.  This calculation
provides the Adjusted Function Point count.

The following formula converts the total of the Degrees of Influence assigned above to the
Value Adjustment Factor:

Value Adjustment Factor = Total Degree of Influence × 0.01 + 0.65.

The Value Adjustment Factor measures software design characteristics and changes
significantly only when design changes are made to the software.

Since such design changes occur infrequently, the Value Adjustment Factor is the most stable
part of the Function Point count.  The Value Adjustment Factor is then applied to the
Unadjusted Function Points (the total of the weighted counts) to establish the Adjusted Function
Point Count.  This represents the size of the application and can be used to compute several
measures as discussed in the Interpretation section of this document:

Adjusted Function Points = (Unadjusted Function Points) × (Value Adjustment Factor).

5.5.2  Measurement

The measurement was performed according to the standard function point counting rules [19,
21, 22, 31].  Since the measurement of function point is somewhat complex, a function point
expert, Charlie Tichener, participated in the assessment.  A brief description of how to conduct
function point counting can be found in [34].  A complete description can be found on the
International Function Point Users Group (IFPUG) website:  http://www.ifpug.org/.

5.5.3  Results

The function point count for the complete PACS is 75.0 (Refer to Table 19 to Table 21).



43

Table 19   General System Characteristics

General System
Characteristics DI

Data Communications 0
Distributed Processing 1
Performance 0
Heavily Used Configuration 0
Transaction Rates 0
On-Line Data Entry 0
End-User Efficiency 1
On-Line Update 0
Complex Processing 0
Reusability 0
Installation Ease 0
Operational Ease 0
Multiple CPU Sites 0
Facilitate Change 0
Total Degree of Influence 2
Value Adjustment Factor 0.67

Table 20   Data Functions

ILF or EIF Descriptions
ILF EIF

DET RET # LVL DET RET # LVL
Card.val system
database < 50 1 1 L

Audit log 5 2 1 L
Message ILF < 20 3 1 L
System clock < 50 1 1 L
Registers 11 1 1 L
Internal counter < 50 1 1 L
Elapsed time ILF < 50 1 1 L
Audit log counter < 50 1 1 L



44

Table 21   Transaction Functions

Descriptions

Processes External Inputs External
Outputs

C
A
L
C

R
E
P
O
R
T

C
O
N
T
R
O
L

A
D
D

M
O
D
I
F
Y

D
E
L
E
T
E

I
N
Q
U
I
R
Y

E
I
D
E
T

F
T
R

# L
e
v
e
l

E
O
D
E
T

F
T
R

# L
e
v
e
l

Entrant card data 1 4 5 1 A

Message to Officer 1 4 5 1 A

Card detection 1 1 0 1 L

Enter PIN 1 4 6 1 A

Open/Close gate 1 1 >
3

1 A

Open gate input 1 3 4 1 A

Guard override input 1 1 > 5 6 1 H

Guard reset 1 5-15 6 1 H

50% full message 1 1 2 1 L

50% full message
response input

1 2 2 1 L

Audit log full message
input

1 2 3 1 A

Audit log dump 1 7 2 1 A

Clock failure
notification

1 1 3 1 L

5.5.4  RePS Construction from Function Point

Jones summarized the state-of-the-practice of the U.S. averages for delivered defects in [21]. 
Table 3.46 in [21] (Table 22) provides the average numbers for delivered defects per function
point for different types of software systems (Table 23).  Table 3.48 (Table 24) provides the
average numbers of delivered defects for given severity levels (Table 25).  PACS belongs to the
category "system software" according to Jones's definition ("system software" is defined as that
which controls physical devices [21]).  Furthermore, the level 1 defects defined in the PACS
specifications [35] correspond to the level 1 and level 2 defects defined in [21].



45

 Table 22   Extract From Table 3.46 U.S. Averages for Delivered Defects per Function Point
[21]

 
Function

points End user MIS Outsource Commercial Systems Military Average

1 0.05 0 0 0 0 0 0.01
10 0.25 0.1 0.02 0.05 0.02 0.03 0.07

100 1.05 0.4 0.18 0.2 0.1 0.22 0.39
1000 0 0.85 0.59 0.4 0.36 0.47 0.56

10000 0 1.5 0.83 0.6 0.49 0.68 0.84
100000 0 2.54 1.3 0.9 0.8 0.94 1.33

Average 0.45 0.9 0.48 0.36 0.29 0.39 0.53

 Table 23   Definition of Software Types Used in Table 22

End-user software:  applications written by individuals who are neither programmers
nor software engineers as their normal occupations.

Management information system (MIS):  applications that enterprises produce in
support of their business and administrative operations:  payroll systems, accounting
systems, front and back office banking systems, insurance claims handling systems,
airline reservation systems, and the like.

Outsourced and contract software:  outsourced software is software produced under
a blanket contract by which a software development organization agrees to produce all,
or specific categories, of software for the client organization.  Contract software is a
specific software project that is built under contract for a client organization.

Commercial software:  applications that are produced for large-scale marketing to
hundreds or even millions of clients.  Examples of commercial software are Microsoft
Word, Excel, etc.

System software:  software that controls physical devices.  They include the operating
systems that control computer hardware, network switching systems, automobile fuel
injection systems, and other control systems.

Military software:  software produced for a uniformed military service. 



46

Table 24   Extract From Table 3.48 U.S. Averages for Delivered Defects by Severity Level [21]

Function
points

Severity 1
(critical)

Severity 2
(significant)

Severity
3 (minor)

Severity 4
(cosmetic) Total

1      0     0     0     0     0  

10      0     0     1     0     1  

100      1     4     14     20     39  

1000      6     78     222     250     556  

10000      127     1225     4224     2872     8448  

100000      2658     15946     66440     47837   132880  

    Average 465  2875  11817  8497  23654  

    Percent 1.97  12.16  49.96  35.92  100  

Table 25   Definition of Severity Levels Used in Table 24

Severity 1
Severity 2
Severity 3
Severity 4

Critical problem (software does not operate at all)
Significant problem (major feature disabled or incorrect)
Minor problem (some inconvenience for users)
Cosmetic problem (spelling errors in messages; no effect on
operations) 

The number of delivered defects can be obtained by interpolation.  The probability of success
per demand is obtained using Equation 24 given the number of defects remaining in PACS and
K.  In the case of function point, since a priori knowledge of the defects' type and location and
their impact on failure probability isn't known, the average K value given in [27] must be used.

The table below (Table 26) provides the number of delivered defects for PACS given a function
point count of 75 and the corresponding values of ps.

Table 26   Number of Delivered Defects vs. ps

System
Software (From

Table 23)

Severity Level
(From Table 25)

Number of delivered
defects 6.8 4.4

ps 0.997913 0.998647



47

5.6  Requirements Traceability

5.6.1  Definition

This measure aids in identifying requirements implemented in source code that are either
missing from, or in addition to, the original requirements. Requirements traceability is defined
as:

                                              (29)RT R
R

� �

1
2

100%

where
RT is the value of the measure Requirements traceability,
R1 is the number of requirements implemented in the source code , and
R2 is the number of original requirements.

5.6.2  Measurement

The requirements were enumerated in [3] as Master Requirements Lists (MRLs).  Each MRL
can be further decomposed into a number of verbs or verb phrases that represent end-user
meaningful requirements primitives.  Quantities R1 and R2 are counted at this primitive level. 
The table below (Table 27) presents the number of requirements primitives for each MRL and
the number of implemented primitives for the MRL.  The developers did not implement
extra-functionalities, i.e., functions not defined in the requirements.
 



48

 Table 27   Requirements Traceability Analysis

MRL
Number of

Functions per
MRL

Number of
Functions

Implemented
Per MRL

MRL
Number of
Functions
per MRL

Number of
Functions

Implemented
Per MRL

MRL1
MRL2
MRL3
MRL4
MRL5
MRL6
MRL7
MRL8
MRL9
MRL10
MRL11
MRL12
MRL13
MRL14

4
4
5
3
4
1
4
3
0
0
2
1
1
1

3
4
5
2
3
1
3
2
0
0
2
1
1
1

MRL15
MRL16
MRL17
MRL18
MRL19
MRL20
MRL21
MRL22
MRL23
MRL24
MRL25
MRL26
MRL27
MRL28

1
0
2
1
1
1
1
1
1
1
2
1
1
1

1
0
1
0
1
1
1
1
0
0
2
1
1
1

Subtotal 48 40

Table 28 lists values for R1 and R2 and the estimation of the measure "Requirements traceability",
RM. The zeros in the column "Number of functions per MRL" reflect the fact that those MRLs are
duplicates of other requirements.  For instance, the MRL 10 is a duplicate of MRL 3 and MRL 7.

Table 28   Requirements Traceability Results

R1 40

R2 48

RM 83.3%

5.6.3  RePS Constructed From Requirements Traceability

Each missing function is a defect.  As such, the finite state machine model approach described
in Section 5.2.4  can be applied to each of these defects and to those only.  This method
underestimates reliability.  

The finite state machine model needs to be modified to map all missing requirements.  The
probability of failure per demand for this model is 0.07757. Hence ps = 1  0.07757 = 0.92243. 



49

5.7  Results Analysis

Having obtained reliability predictions based on each of the six measures, the estimations
obtained will be compared and contrasted to each other and to the rankings established in
NUREG/GR-0019.
First, prediction error (pe) is defined to quantify the quality of the software prediction:  

                                            (30)
� � � �

� �
p

p real p est
p reale

s s

s

�

�

�1

where 
    ps(real) is the probability of success per demand obtained from reliability testing, and
    ps(est) is the probability of success per demand obtained from the RePS.

This definition implies that the lower the value of pe, the better the prediction.  Table 29 provides
the "real" software reliability for PACS, each measure's value, the intermediate estimation of the
number of unresolved defects from the measure, the reliability estimated based on the
measure, and the value of the corresponding prediction error.

Table 29   Measurement, Reliability Prediction vs. The Prediction Quality

Measure Value
No. of

Unresolve
d Defects

ps pe

Mean time to failure 1267.6 seconds N/A 0.91849 0.029643
Defect density 11.72

defects/KLOC 9 0.92243 0.076548

Test coverage 94.6% 5 (4.8) 0.908 0.095238
Requirements
traceability 78.6% 7 0.92243 0.076548

Function point 75 6 (5.6) 0.998038
5 0.976649

Bugs per line of code
(Gaffney estimate) 66 (65.6) defects 66 (65.6) 0.999972 0.999667

ps(real) 0.916

Note first that the prediction errors of the first four measures are low, and, second, that they are
quite close to each other.  "Requirement traceability" fares higher than expected.  This can be
explained by the fact that the majority of unresolved defects in the application studied are
actually missing requirements.  Hence, in this particular case, "Requirement traceability" is
almost as good a predictor as "Defect density".  The prediction error related to the last two
measures, conversely, is rather large (between 97 and 99 %).  In the case of "Function Point",
this can be attributed mainly to the use of the fault exposure ratio data published in Musa, which
does not seem to apply to PACS.  It might be possible to improve this value by injecting faults in



50

the application and obtaining a value of K specific to the application.  In the case of "Bugs Per
Line of Code" the large error can be attributed to the value of K and to a completely incorrect
estimate of the number of defects.  A possible correction is to take severity levels into
consideration.  In other words, it may be possible to improve these two measures by adding
supplementary information and thus build a stronger RePS.

Table 30   Validation Results

Measure Rankings in
NUREG/GR-0019

Rankings with
respect to pe  

Mean time to failure
Defect density
Test coverage
Requirements traceability
Function point
Bugs per line of code
(Gaffney estimate)

1
2
3
4
5
6

1
2
4
3
5
6

Table 30 provides the rankings presented in NUREG/GR-0019 and the rankings with respect to
pe.  These results support the rankings presented in NUREG/GR-0019.  The only exception is
the ranking of "Requirement traceability" which is higher than expected.  This can be explained
by the fact that the majority of unresolved defects in the application studied are actually missing
requirements.  If "Requirements Traceability" is excluded, the demarcation between High
Ranked, Medium Ranked and Low Ranked categories can be seen.

The results obtained appear to validate the conclusions presented in NUREG/GR-0019, i.e., 1)
the rankings, 2) the ability to construct strong RePSs that will yield acceptable reliability
estimates. However, further validation is required to confirm these preliminary results.

For instance, defect density yields good estimates because in the application considered most
unresolved defects have been identified through inspection.  Test coverage in the same manner
yields good results because effort was placed on fixing one of the measures deficiencies
experienced in PACS, i.e., missing functions.  Other applications may present other challenging
problems that will require further improvements to the RePSs.

Based on feasibility considerations, additional I&C applications of larger size (LOC = 7,000 and 
LOC = 30,000) and greater complexity should be considered to stabilize the RePSs.



51

6. FUTURE WORK
 
6.0  Overview

This chapter discusses future research and validation studies of the assessments presented in
Chapter 5 for applicability to safety critical applications.

6.1  Expanding to Other Measures, Applications, Lifecycle Phases

Further research should cover all development stages (i.e. requirements, design,
implementation and testing) for the families already selected, plus additional 6 or 7 families. 
The purpose of this expanded scope is to investigate RePSs in other phases of the lifecycle
and other families to determine if reasonable estimates of reliability with this method.  The
families (and measures) covered in the current research are:  "Failure rate (MTTF)", "Fault
detected per unit of size (defect density)", "Functional size (function point)", "Requirements
traceability (requirements traceability)", "Test coverage (test coverage)", and "Estimate of faults
remaining per unit of size (bugs per line of code)".  The proposed additional families are: 
"Cause effect graphing", "Error distribution", "Estimate of faults remaining in code",
"Requirements compliance", "Requirements specification change requests", and "Time taken to
detect and remove faults".  This would bring the coverage of the families to 70% without the OO
measures, and to 60% with the OO measures.

Other high-integrity, safety-related software applications should be considered for the next
phase of research effort to validate the RePSs.  The question is which applications and how
many?  Based on feasibility considerations, two additional I&C applications of larger size ( LOC
= 7,000 and LOC = 30,000 ) be considered as test cases.

6.2  Improving the Current RePSs

Further research should investigate improvements to the current RePSs.  Suggested
improvements are discussed below for each measure.

6.2.1  Towards a Full Defect Density RePS

The Defect Density RePS proposed in Chapter 5 (Section 5.2.4) is limited to known defects, i.e.
unresolved defects found by inspection.  Unknown defects that still remain in the application
may contribute further to failure of the application.  Not accounting for these will result in an
overestimation of reliability.

To improve this RePS:  1) estimate the number of unknown defects remaining in the application
using capture/recapture models; and 2) investigate the unknown defects' contribution to
probability of failure by either using requirements mutation and simulation techniques to study
the PIE characteristics, or using the fault exposure ratio calculated from the known unresolved
defects.  

6.2.1.1  Estimation of the Number of Defects Remaining

Measurement has allowed identification of nine unresolved defects.  Unknown defects that still



21This is usually performed as an inspection activity. 

22  Detection probability includes the probabilities for inspectors to detect defects and the probabilities of defects to be
detected.

23This observation was rigorously verified later.

52

remain in the application may contribute further to failure of the application.  Not accounting for
these will result in an overestimation of reliability.  The use of Capture/Recapture models has
been proposed to estimate the number of defects remaining in a software engineering artifact
after inspection.  It is necessary to discuss Capture/Recapture models, their use in software
engineering, and their application specifically to the PACS system to determine the number of
defects remaining.

Capture/Recapture (CR) models were initially developed to estimate the size of an animal
population [13, 15, 29].  In the field of software engineering, CR models have found application
in testing control and inspection-process control.  The capture/recapture technique can be
applied to the software inspection process if the latter is viewed as a sampling21 of the
population of defects by the software inspectors.  Based on the overlap of defects between
inspectors, the number of defects remaining in the software can be estimated [11-13, 16, 37].

Otis et al [29] classified CR models into four categories based on the assumption governing the
detection probability22:
  

a. Model M0 :  Different defects have identical detection probability.  Every inspector
has the  same detection probability.

b. Model Mh :  Defects have different detection probabilities.  Every inspector has
the same   detection probability.

c. Model Mt :  Defects have identical detection probability.  Different inspectors
have different  detection inspection.

d. Model Mth :  Different defects and different inspectors have different detection
probabilities.

For the inspection process used in this study, variations were observed23 in both defects' and
inspectors' detection probabilities.  In other words, different inspectors have different detection
probabilities ej (j = 1, �, t where t is the total number of inspectors), and different defects have
different detection probabilities pi (i = 1, �, N where N is the total number of defects residing in
the artifact under inspection).  Chao [16] proposed a Mth model to deal with this situation.  The
model is discussed below.

6.2.1.2  Chaos Mth Model

The defect population size is given as:

                                                    (31)�
� �

�N D
C

f
Ci

i i
i� �

1 2
�

where  



       

53

is the ith defect population size estimator, i = 1, 2, 3,�Ni
 D is th number of distinct defects found by t inspectors, and
 f1 is the number of defects found by exactly one inspector.

The term  in Equation 31 is given as:�Ci

                                                        (32)�C f
1

11� �

� k fk
k = 1

t

                                                  (33)�C
f f

t
2

1 2
1

2 1
1

� �

�
�

�
�
�

�
�
�

� k fk
k = 1

t

                             (34)
� �� �

�C
f f

t
f

t t

k fk

t3

1 2 3

1
2 1

1
6 1

1 2
� �

�
�

�
�
�

�
�
� 	

� �




�
�




�
�

�
k = 1

and  is given as: ��1
2

                                 (35)
� �

� max
�

,
,

� i

j
k

k

j 
j k

N k k f

n n
2 0 1

2
1�

� �

��
�

�

�

�
�

�

	






�  k

0

where

                                          (36)� �
,N D Cj i0 �     i = 1,  2,  3

and
t is the number of inspectors,
nj is the number of defects found by the jth inspector, and
fk is the number of defects found by exactly k inspectors, k  = 1, 2, 3.

 



54

The variance of these three estimators is given as:

                              (37)

� � � �

� �

� �

var �
� �

cov ,

� �

cov ,

� �

cov ,

est i est k j

tt

est k j

tt

est k j

tt

N f f

n n
n n

n
f n

� �

�

��

��

��

�

�

�

�

�

�

�

�

�

�

�

�

N
f

N
f

 N N

 2 N
f

N

i

k

i

jj = 1k = 1

i

k

i

jj = 1k = 1

i

k

i

jj = 1k = 1

where

                                     (38)� �cov ,
�

�

est k j

j
j

i

k j

i

f f
f

f
N

f f
N

�

�
�

�
�

�

�
�

� 	




�

�
�




�
�

1     if   k =  j

          if   k  j

                                                                        (39)� �
� �

cov ,
�est k j

k j

i

f n Z
f n
N

� �

�

�

� �

�

�

#  k
   j  

                      (40)� �cov ,
�

�
,

est k j

j
j

i

k j

ik j 

n n
n

n
N

Z
n n
N

�

�
�

�
�

�

�
�

� 	




�

�
�




�
�

�

�

1               if   k =  j

       if   k  j
 

�

�

and
ω is a nonempty subset of {1, 2, �, t},

Zω is the number of defects with inspection history ω, i.e., number of defects       
detected in each of the samples indexed by elements of ω and in no others.  For
instance, Z13 is the number of unique defects detected by the first and the third     
inspectors, but not by any other inspectors.

#(ω) is the number of elements in ω.



24The coefficient of variation of p, where p is the sample of {p1, p2, …pt}. CV is defined as the standard
deviation of p over the arithmetic mean of p.

25The sample coverage is defined as the fraction of the detected defects.

55

The simulation results presented in [16] provided a criterion for choosing an estimator among

  Chao recommended the use of  or when 0.4 � CV24 < 0.8 and the� , � , � .N N N1 2 3
�N2

�N3
sample size25 is large enough. In the case of CV � 0.8   is recommended for practical use. �N1

However, the Jackknife model [29] is appropriate when CV < 0.4 and the sample coverage is
greater than 0.50.

Chao's Mth Estimate of Number of Defects Remaining for PACS Table 31 below provides all
primitives used in Chao's model and the results for all three estimators and their corresponding
standard deviation.

Table 31   Inspection Results

I 1 2 3
fi 3 3 3
ni 9 6 3
D 9
ω {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
Zω 3 0 0 3 0 0 3

�Ni 11.91 9.27 25.10

� �var �
est iN 2.75 1.98 20.32

The point estimate of the defect detection probability is given in Table 32.  The CV of this

sample is 0.43.  Therefore the estimators  or should be used to estimate the total�N2
�N3

number of unresolved defects (known and unknown) in PACS.  The estimation from  was�N3

discarded on the basis that the sample coverage corresponding to  is only 36% (9/25.10),�N3

which implies that the sample coverage assumption for does not hold.  The estimate given�N3

by  (9.27) was thus selected (with a 97% sample coverage).�N2



56

 Table 32   Defects Discovery Probability 
 

Defect ID 
I pi

1
2
3
4
5
6
7
8
9

0.33
0.33
1.00
1.00
1.00
0.33
0.67
0.67
0.67

6.2.1.3   From Defects Remaining to Reliability

The contribution of unknown defects to the failure probability can be estimated either by using
the fault exposure ratio techniques presented in Equations 5-17 to 5-21, or by utilizing the
mutation and simulation techniques to investigate their PIE characteristics.  These two methods
are discussed below.

The probability of success per demand given the 9 defects found by inspection is 0.92243. If it
is assumed that there are 9.27 defects, and using the fault exposure ratio calculated earlier
(i.e., 9 defects), a probability of success per demand of 0.92020 is obtained.  The
corresponding prediction error is then 0.050.

Another approach is to split the fault exposure ratio contributions into contributions from known
defects (K1, already known) and contributions from unknown defects (K2), and then calculate
the fault exposure ratio for the unknown defects (K2) using a combination of mutation and
simulation.  Calculating K2 requires:
  

1. Establishment of a finite state machine model to represent the behavior of the
system under study (PACS) given the operational profile.

2. Decomposition of the requirements specification to the concept level.  Each
concept represents a smallest, user-meaningful object, subject (noun, noun
phrase) or an action (verb).

3. Mapping of all concepts into the transitions of the finite state machine model.
4.  Assessment of the probability that a concept is defective.
5. Simulation of the failure behavior associated with the unknown defects remaining

in the system using Monte Carlo simulation and requirements mutation.

Steps 4 and 5 are open research items.

6.2.2  Improvements for RePS from Test Coverage

This RePS estimates the number of defects remaining from "Test coverage", and then
estimates the impact of these defects on the probability of failure (or success) per demand



57

using the fault exposure ratio.  A "backfiring" relationship was also used to account for missing
functions.  The issues that should be resolved to improve "Test coverage" RePS are:

1. "Test coverage" RePS estimates the number of defects remaining in the system
(known and   unknown).  Hence the issue of obtaining a "correct" fault exposure
ratio applies to the "Test  Coverage" RePS.

2. Another open research item is the validation of the Backfiring relationship.  In
this study the coefficient k of the Backfiring relationship (please refer to Equation
5-15) is derived from PACS itself instead of using the average value provided in
[21].  This is believed to be the best approach because this coefficient not only
depends upon the language, but also on the development environment
(development team, project characteristics, etc.).  Different k values for different
systems are expected.  This assumption needs to be validated by applying this
RePS to different applications.

6.2.3  RePS from Requirements Traceability

The requirements that appear in the requirements specifications, but are not implemented in
the source code are the only defects considered in the "Requirements traceabilty" measure. 
Functions implemented in the source code but not defined in the requirements need also to be
considered according to the definition of "Requirements traceability".  Such functions do not
exist in PACS and hence this RePS was not extended to account for these defects.  The impact
of unspecified functions of this type on the reliability estimation needs to be investigated in
future research.

6.2.4  Function Point RePS

This RePS first obtains the number of defects at a given severity level corresponding to a given
number of function points.  It then applies Equation 20 to estimate the probability of success per
demand.  Currently, the RePS uses the fault exposure ratio given in the literature [27].  To
improve the results, a better estimate of this quantity is needed.  Thus, the fault exposure ratio
discussion in previous sections is also applicable to this RePS.

This RePS can be improved by first verifying the relationship between function point and
number of defects (which can be done by applying this RePS to other applications of different
sizes) and then solving the fault exposure ratio and PIE issues discussed above.

6.2.5  Bugs Per Line of Code RePS

"Bugs per line of code" estimates the number of defects remaining in the system. It is very
natural to apply Equation 20 to this number and obtain the reliability estimation.  The discussion
of the fault exposure ratio remains the same.  However, the PIE study would be different in this
case since the finite state machine model may not be available.  For this study, the source code
is available, therefore the traditional PIE analysis [38] can be performed and the fault exposure
ratio obtained.



58

7. EXPERT REVIEW

7.1  Review Process

A panel of experts was used to review the methodology and provide comments.  Four experts
were contacted and invited to participate in the review.  These experts took part in the study
presented in NUREG/GR-0019 [28] and have extensive knowledge of the topic under study.

The following questionnaire (Table 33) was developed in cooperation with the NRC Project
Manager and distributed to the experts.  The experts were given three weeks to review the
document and provide their feedback.

 Table 33   Questionnaire

Category Questions 
1.  Research Quality a. Is the work technically sound?  

b. Does the research meet the stated objectives?  
2. Efficiency a. What is the predictive capability of the methodology (e.g., highly accurate,

moderately accurate but still useful, not accurate, etc)?   If you believe it too
early to make a judgment (e.g., further research required), so state.  

b. What issues should be studied/clarified in possible follow-on research?  For
instance comment on the possible follow-on research defined in Chapter 6. 

c. How can the methodology be improved in terms of its ability to assess and
predict software quality? 

3. Ease of Use a. How easy is it to use the methodology (given well established RePSs)?  For
example, perhaps implementation can be considered: easy if the methodology
can be implemented by individual software engineers (it could be
requirements analysts or QA personnel or other); moderate if it can be
implemented through a team effort of software engineers; or difficult if it can
be implemented only under supervision of a project manager.  

b. Can the methodology benefit from further refinement in terms of ease of use
(even if you consider implementation to be easy)?  

c. If you believe the implementation effort is relatively easy, can the methodology
replace current NRC practice (i.e., software reviews in accordance with the
Standard Review Plan, NUREG-0800, Chapter 7)?  

d. If you believe implementation effort is either moderate or difficult, what
refinements would you recommend be made such that the methodology can
supplement or replace current NRC practice (i.e., software reviews in
accordance with the Standard Review Plan, NUREG-0800, Chapter 7)?

4. Opinion a. What is your overall opinion of the research to this point?  
b. What potential impact might this research have on state-of-the-art in software

engineering?  What  potential improvements might it have on building and
analyzing safe software? 



26The text in italic is the questionnaire. The text in quotes is the expert's answers to our questionnaire.  The
bolded text is the University of Maryland team's answer to the experts. 

59

7.2  Responses From Experts

This section summarizes the experts opinions and UMDs response26.  University of Maryland's
responses fall into three categories:

1.  If the experts' comments could be addressed directly, these were addressed in this
document and the document was modified accordingly.

2. If the comments pertained to future research objectives, it was indicated so in the
UMD responses.

3.  If the UMD research team disagreed with the experts' interpretation, UMD provided
additional information to clarify the issue.

1. Research Quality:

a. Is the work technically sound?

X: "The work performed is basically sound as far as it goes.  However, since the
analysis  is based on the application of a sample of RePSs to a relatively small
software problem, the analysis is not conclusive.  Furthermore, the draft did not
include the summary conclusions (Chapter 8) so they could not be evaluated. 
Detailed comments on the draft report are provided in Section 5 of this
response."

[UMD: Current research was only the initial stage of a comprehensive validation
study.  The validation on a larger application, complete development life
cycle and more measures is being proposed. Please refer to Section 1.2
and Section 6.1 ]

Y: "Technical quality of work is initially sound.  Added reference."

Z: "The overall approach is sound:  the success probabilities estimated by various
RePS are assessed against the "actual" success probability for a benchmark
program.  A limitation that should be recognized is that the actual success
probability was obtained from a test that may not have exposed the benchmark
to failures due to missing requirements.  This limitation should be stated in the
final version of the report."

"The test case selection was based on user profile methodology that may be
appropriate for the PACS application but is not suitable for safety system
software because it does not provide adequate exposure to the unlikely
conditions under which the safety system is really challenged." 

[UMD: Actually, this is not a limitation.  The oracle should be perfect and should
contain no missing requirements.  If it is a limitation, it would not be
possible to judge whether or not the six measurements can capture



60

missing requirements.  So again the oracle has to be perfect. In the case of
PACS, the user establishes the oracle, and since the user makes the final
decision whether or not something is acceptable or not, the oracle is
perfect.  Note also that the six measurements under study were not
performed by the user but by inspectors unaware of the oracle and hence
unaware of what the true requirements were.  They (the inspectors) were
working from an incomplete set of requirements.

As for the operational profile, UMD strongly believes such information
must be available for safety critical systems.  For instance, one knows
whether there are demands for shutting down a nuclear reactor and how
frequent these are.  Please refer to Section 4.1 .]

W: "The work is technically sound with respect to the principle and construction of
RePS. In particular, it provides an important effort for a quantitative assessment
of software-based safety-critical applications, and a methodology to obtain such
assessment with a prediction mechanism.  The framework established by this
effort is unique and praiseworthy.  The validation of the work, however, is
currently limited to a small size project with selected software engineering
measures.  Scalability of the methodology in terms of larger projects and other
software engineering measures would be in need to complete the investigation."

[UMD: Current research was only the initial stage of a comprehensive validation
study.  The validation on a larger application, complete development life
cycle and more measures is being proposed.  Please refer to Section 1.2 
and Section 6.1 ]

b.  Does the research meet the stated objectives?

X: "The research meets the first stated objective of evaluating the classification of
RePS and expert assessments of them using a small sample of the total RePSs
identified.  The research did not meet the second stated objective of identifying
roadblocks and developing an approach to conducting large-scale evaluations of
RePSs.  While some difficulties with the specific techniques were discussed, no
overall approach to large-scale evaluations was presented in the report."

[UMD: Since no roadblocks has been found that may prevent the validation
approach to be scaled up to a larger application, the same framework must
be applicable to large-scale validation.  Please refer to Chapter 2.]

Y: "Predictive ability is reasonably examined and demonstrated by the case study
and the selection of a subset of measures.  While the case study is reasonable,
the validation of the case study would be enhanced by cross-referencing to
actual observed reliability numbers from the field (failure rates from historic data
compared to the estimated numbers produced by the method).  Additionally, as
observed, the system under study is a small-scale project, which was a simplified
system.  This raises the following issues that should be noted more clearly:



61

“1. Scalability of results and numbers (small program vs. large program).  
“2.  Difference in small teams vs. large teams (techniques that work in small          
   teams sometimes do not work for large teams).

“3.  Applicability of results between a simplified program and a full-scale              
production system."

"Usability of method - I do not find that this aspect was fully addressed.  The
nature of the team using the various metrics was not quantified.  Hard data on
user learning time, difficulties, and lessons learned should be presented."

"Objective of determining if theoretical and practical roadblocks could prevent
large-scale validation.  The practical objective appears to have been met by the
case study and using the selected measures.  There remain issues associated
with validation of the selected metrics (Are they really predicting correct
reliability?) to support the theoretical aspects of these metrics.  However any
case study will suffer this problem, as only a large cumulative database of
projects will prove theories.  Evidence of use exists in other industries, but the
applicability to the NRC domain will need "real world" demonstration."

[UMD: Cross-referencing to field results (use of PACS in the field) is not
necessary here since as explained earlier the oracle is perfect.

The limitations due to the small-scale nature of the study are correct and
will be resolved in further research by applying the technique to a larger
program (Please refer to Section 6.1 ).

Usability of the method: Since the methodology used is still in
development, i.e., this is a research stage still, it is impossible to provide
reliable and meaningful data on learning time and other related data items. 
Such estimates can only be provided once the RePSs are all known, a
procedure has been developed and the method is applied by external users
(not the developers of the methodology).]

Z: "Within limitations of funding and schedule the research met stated objectives: 
the effectiveness of some selected measures was evaluated and the rankings of
the selected measures was verified (or explained)."

   
[UMD: ]

W: "A validation of the RePS theory is provided by the six selected software
engineering measures and the project case study.  The RePS methodology is
well illustrated by applying reliability modeling efforts to the each of the six
measures, and by comparing the reliability prediction results with respect to the
actual reliability of the system.  The rankings of the measures present a
remarkable agreement with the NUREG/GR-0019 rankings obtained by the
software engineering experts.  The stated objectives are quite clearly met based
on this study." 



62

"On the other hand, this validation effort is only limited to the six selected
measures from the 30 original measures.  Although the selected measures
represent a creditable subset of the original measures, a full-scale investigation
of the original measures would be required for a complete validation.  Also the
case study should be extended in terms of it complexity and software size."

[UMD: A large-scale validation research is being proposed.]

2. Efficiency

a. What is the predictive capability of the methodology (e.g., highly accurate, moderately
accurate but still useful, not accurate, etc)?  If you believe it too early to make a
judgment (e.g., further research required), so state.

X: "Focusing on the ability of RePSs to estimate reliability in terms of known defects
is a good way to get started.  The results of the analysis indicate that the
individual RePSs vary widely in their predictive ability.  A quality assessment
methodology that is based on applying all of these RePSs is too exhausting and
redundant to be practical.  At this stage the researchers need to down-select to a
small number of promising RePSs for further study.  This analysis appears to
show that the expert assessments previously reported are consistent with
empirical results, so perhaps the expert assessments can be used to select the
smaller set of RePSs to be investigated further.  Criteria for down-selection of
RePSs should include predictive capability, difficulty of obtaining the necessary
information, and life-cycle coverage (the set of selected RePSs should cover the
software life cycle)."

[UMD: Here one needs to decide what is the objective.  If it is the validation of the
rankings obtained in NUREG/GR-0019, then a larger scale study that looks
at "predictive" and "not so predictive" measures should be performed. 
This will help NRC in its review of applications from vendors who may
come with their specific set of measures.  If the objective is to recommend
a set of measures, then one should focus on the most predictive measures
and improve the predictive ability by further enhancing the RePSs of these
measures.

Please refer to Section 1.2 ]

Y: "Moderately accurate but still useful.  I believe further research will always be
beneficial, and I also would not call this classification "final"."

[UMD: The research team is in agreement with the reviewer since this a
small-scale study.]

   
Z: "The predictive capability of the methodology may be sufficiently accurate for

applications that can live with success probabilities in the 0.95 range.  Nuclear
plant safety programs demand much higher reliabilities.  The true measure is the
failure probability that can be tolerated.  Thus, for nuclear and other critical
applications the difference is not between 0.95 and 0.99 probability of success



63

but between 0.05 and 0.01 probability of failure.  Safety programs require that
the failure rate not exceed roughly 0.000001 per year.  The predictive capability
demonstrated here does not come close to this requirement."

   
[UMD: The research team disagrees with this comment.  In this study accuracy is

demonstrated by the relative error in the estimate.  The accuracy for the 4
top RePSs is between 3% and 9% in relative error on the failure probability. 
Let assume now that the failure probability of the target system is 10-6. 
Then the estimates would vary between 10-6- 9.0 ×10-8  < target reliability <
10-6 + 9.0 × 10-8.  This is consistent with the 3% to 9% relative error.  So if a
reliability of lower than 10-6 needs to be ensured, the system measured
should exemplify an estimate of 0.91 × 10-6 (1.0 × 10-6  0.09 × 10-6) .

Please refer to Section 5.7 ]

W: "Further research would be needed to make a judgment.  In principle, a highly
accurate prediction system for software reliability is, in my view, extremely
difficult, if not impossible.  The main obstacles are not only due to invisibility of
software attributes (software usually does not fail gracefully) and un-repeatability
of software projects (i.e., every single software project is a unique project
involving either different applications, personnel, or environments), but also due
to the lack of creditable models today to understand how human make mistakes
in developing software.  In presence of these obstacles, however, this research
provides a scientific way to attack the software reliability prediction problem.  The
accuracy presented by the case study is certainly very encouraging.  More
project investigation would be needed to establish high confidence in the
accuracy of the mechanism."

"The usefulness of the methodology is, on the other hand, clearly affirmative. 
Even the prediction results from some projects may not be as accurate, RePS
provides a quantifiable framework to study what, why, and how the results would
not be as accurate.  This would be the engineering techniques which, proven
working for other hardware-oriented systems, are needed for software-intensive
systems."

[UMD: ]

b. What issues should be studied/clarified in possible follow-on research? For instance
comment on the possible follow-on research defined in Chapter 6.

X: "Four major issues should be investigated in further research:

“1.  Prediction of latent defects and operational reliability based on observed
defects and other software characteristics (such as size and complexity).  That is
the most important assessment developers of safety-critical software can make. 
Good ideas about how to do that for selected RePSs are discussed in Chapter 6
of the report.  However, other RePSs may be needed to address the coverage
criteria discussed above.



64

“2.  Practical application or integration of RePSs into software engineering
methods.  If these techniques are to be used effectively, they must be integrated
into actual software engineering practices.  For example, reliability could be
estimated during design and discussed at the preliminary design review.

“3.  Validation of the RePSs in large-scale studies.  Most of the RePSs iscussed
in this report are based on parameters or factors that are specific to the
application.  Safety-critical software for nuclear applications can be expected to
differ in important ways from the systems software from which data was
extracted for this study.  RePSs need to be study in the realistic context in which
they are to be applied.

“4.  What is the best way to combine different RePSs at the same point in
development combined?  Which RePS should be used under which conditions?"

[UMD: These issues are to be addressed in follow-on research.]

Y: "Issues of repeatability of measures - independence and objectivity of numbers. 
Development teams required to produce any set of metrics may "fudge" the
numbers to meet required goals.  Independent derivation of numbers, e.g., IV&V
teams or SQA, may be the only way to avoid the lack of objectivity by the
development team.

“1.  Issue of test oracle - Aspects of the approach are based on the use of test
oracles.  These oracles have issues of scalability and applicability to different
types of software.  For example, very complex real time control systems have
proven difficult for test oracles because of model state space explosion.  Also,
many oracle techniques require very advanced software engineering
approaches, which means not every engineer can apply them.  Tools such as
TestMaster have proven usage in state machine based or traditional systems,
but complex control systems, such as those found in plant controls, may not lend
themselves to such tools.  More research in this domain is needed.

“2.  Create a tool for counting lines of code.  This would save human labor and
assure consistency.

“3.  Research the impacts of these methods on COTS products as well as
custom tools."

[UMD: Test oracle issue: Based on UMD's knowledge, TestMaster test oracle
models for large-scale real-time control systems do exist, for instance,
such a test model exists for a large-scale switch system.

COTS is an issue that will be covered in the future.]
   

Z: "The major shortcomings of the measures evaluated in the report are missing
requirements and fault exposure ratio.  The effect of missing requirements is
explicitly acknowledged with regard to requirements traceability, but it also



65

affects most of the other measures and even the "gold standard".  How do you
test for failures due to missing requirements if the test is developed from a user
profile that was also used in generating the requirements?  The crucial role of
the fault exposure ratio for translating quality measures into reliability measures
has been recognized by many researchers.  The empirical values used in the
report may be adequate for the PACS application.  There is no technical basis
for accepting (or rejecting) them for any other application."

[UMD: The issue of missing requirements was addressed earlier (Please see
Comment 1.a.Z).  As for the issue of fault exposure ratio, it is true that
further research should be conducted as the one planned in a large-scale
study.  This study will allow the further investigation of the validity of the
approach proposed.]

W: "It is encouraging to see the plan for investigation on larger size projects.  More
measures should be carefully chosen for investigation."

"To improve the current RePSs, Chao's Mth Model [16] is presented.  There are
other prediction models that can be considered.  Two major references are: 

“1.  Rome Laboratory (RL), "Methodology for Software Reliability Prediction and
Assessment", Technical report RL-TR-92-52, volumes 1 and 2, 1992.

“2.  M.R. Lyu (ed.), "Handbook of Software Reliability Engineering", McGraw-Hill
and IEEE Computer Society Press, 1996."

"When performing follow-on investigation, validity of the parameters associated
with each prediction model (e.g., the fault exposure ratio in [25], the defect
coverage in [23], and the coefficients in Bugs per Line of Code (Gaffney
Estimate) [17], etc.) can also be studied in detail.  Establishment of the historical
values of these parameters would help software engineering researchers for the
advancement and accuracy of the associated models."

[UMD: UMD is planning to investigate these models in future research.]

c. How can the methodology be improved in terms of its ability to assess and predict
software quality?

X: "Down-selecting and addressing the research issues discussed above will help
to improve the individual RePSs and transform them into a quality assessment
methodology from a collection of techniques.  The NRC may also want to
consider establishing a database and collecting data from software suppliers to
nuclear power stations to establish benchmarks for performance.  The
telecommunications industry has a similar program."

[UMD: ] 
Y:



66

[UMD: ]

Z: "With regard to the missing requirements issue the methodology can be
improved by joining it with rapid prototyping or spiral development (which lead to
early detection of missing or incorrectly interpreted requirements).  With regard
to the fault exposure ratio it should be recognized that this is at present an
empirical relationship and will require extensive domain specific measurements
for arriving at an acceptable value for a given domain at a specific time (because
it will change with changes in development and test methodologies)."

[UMD: It is unclear how the comment on rapid prototyping relates to this
research.]

W: "For the method of using PIE in getting reliability prediction, the estimation of
PACS failure probability is 0.07757 (page 5-18).  It is not clear how this number
is obtained.  More detailed analysis would be helpful.

“The test coverage measurement results include the estimation of function
points, but the function points are also one of the measures for the prediction
model.  This would present a dependency problem between these two measures
under investigation."

[UMD Function point here is a support measure and the ranking of a support
measure should be lower than the root otherwise it should be the root.]

3.  Ease of Use

a. How easy is it to use the methodology (given well established RePSs)?  For example,
perhaps implementation can be considered: easy if the methodology can be
implemented by individual software engineers (it could be requirements analysts or QA
personnel or other); moderate if it can be implemented through a team effort of software
engineers; or difficult if it can be implemented only under supervision of a project
manager.

X: "The ease of use of the quality assessment methodology depends on the ease
of using the selected RePSs.  The study suggests that it is highly variable 
although the rating scheme used in the report obscures that fact (see Section 5
of this response).  This study did not evaluate the overall methodology, only
individual RePSs.  Some of the RePSs require mathematical expertise than none
of the listed personnel types typically have."

[UMD: The six RePSs constructed so far require limited mathematical capability
such as addition, multiplication, division at the maximum exponentiation. 
If the RePSs were to become increasingly difficult mathematical libraries
and related tutorials could be provided to help the analyst.
Please see Chapter 5.]



67

Y: "Moderate to difficult.  My experience in applying similar metrics and systems of
measures is that these are team efforts that must be management supported.  A
project focal point with the correct training can implement the mechanics of this
methodology.  However, without full team buy-in and direct management
ownership, the efforts are either non productive (no improvement in quality and
reliability) or invalid (numbers may be wrong or worse falsified)."

[UMD: ]

Z: "With the degree of automation employed in this research for the MTBF RePS,
this measure may be considered easy even if it may be time consuming.  All
other measures employed here depend on expert reviews or classifications.
They are both more difficult and less accurate."

[UMD: It is the responsibility of the development organizations to follow state of
the art practices for measurement.  It is possible to envision that UMD
would summarize these best practices for the measures that constitute the
RePSs.  It should also be noted that the ranking of the measures did
account for the issue of inaccuracy (the ranking criterion was repeatability)
and this is why some measures were ranked lower than others and were
assumed to lead to a lesser predictive quality.]

W: "Implementation of this methodology, given well-established RePSs, would be
quite easy.  Individuals (requirement analysts, QA personnel or reliability/safety
engineers) can handle it quite comfortably.  The main difficult part is the data
collection effort.  Data collection for RePSs, however, can be part of the overall
project data collection effort."

[UMD:  ]

b. Can the methodology benefit from further refinement in terms of ease of use (even if
you consider implementation to be easy)?

X: "My own experience in implementing statistical methods in software (statistical
process control and defect profile analysis) suggest that providing training,
identifying concise references, and acquiring simple tools make the application
of such techniques easier and more likely to succeed."

[UMD: ]

Y: "Yes.  Provide supporting examples and more methodology details on using
each set of numbers and formulas.  "Cook book" or practice type of
documentation could enhance the utility of the methods."

[UMD: ]

  



68

Z: "The reviewer does not know how much effort was required for the test oracle,
and that may be an area where refinement for ease of use may be warranted."

[UMD: Based on UMD's experience so far, the effort to develop the test oracle is
linearly proportional to the size of the application.  So no additional
refinements for ease of use are required.]

W: "Yes.  In particular, software tools can be readily available for automatic analysis,
including parameter sensitivity analyses and scenario-based analyses.  These
will help provide feedback control to the software engineering development, and
establish historical database for the modeling results."

[UMD: ]

c. If you believe the implementation effort is relatively easy, can the methodology replace
current NRC practice (i.e., software reviews in accordance with the Standard Review
Plan, NUREG-0800, Chapter 7)?

[UMD: This question probably misled the reviewers and was premature:  the
purpose of this research is to validate the rankings presented in
NUREG/GR-0019.  The replacement of NRC's current review practice is the
ultimate goal of this long-term research, not the objective of the current
validation.  The current validation effort is limited in scope and the RePSs
developed are based on the state-of-the-art knowledge in the field of
software reliability engineering.  It's only under these conditions that one
is able to validate the ranking provided in NUREG/GR-0019.  Therefore it
cannot at this stage replace the current review plan.  This same question
should be asked when the full-scale validation is complete and when a
procedural approach has been developed to show analysts how RePSs
should be quantified and measurements made, and simple tools such as
small mathematical libraries have been developed.]

X: "The use of RePSs cannot replace any existing NRC practice.  For example,
software reviews address many issues beyond the scope of the quality
assessment methodology.  However, RePSs can enhance existing practices.
Specific suggestions are provided below."

[UMD: See Comment 3.c.UMD]

Y: "I do not believe the method could replace current practice.  However, a phased
in approach could provide supportive evidence to allow for efficient (shorter)
review practices and/or improved products by using the combination of
practices."

[UMD: See Comment 3.c.UMD]

Z: "The MTBF RePS is relatively easy to use and in the PACS application gave the
closest estimate of success probability, however it is at present not suitable for
the very low failure rates that must be demonstrated for Class 1E programs (see



69

also our response under 2a)"

[UMD: The reviewer's comment related to the infeasibility of assessing levels of
reliability (or more precisely unreliability) of 10-6 is related to boundaries
which were described in the software engineering literature, such as Ricky
Butler's 1993 paper [14].  However, these results are obsolete.  First, Ricky
Butler's paper considers failure probabilities of the order of 10-9 and less
and not 10-6.  Second, since this paper was written, the computer
technology and the test techniques have evolved significantly.  For
instance, computer speed has increased by a factor of 64 (according to
Moore's law).  This trend will continue.  Test technologies have evolved to
the point that one can thoroughly automate testing and completely benefit
from the speed of the computer.  A calculation for PACS shows that if the
probability of failure of PACS was 10-6, it would take 12 days on five
computers to assess the MTTF.]

W: "The methodology is certainly easier than the current NRC practice of software
reviews for its implementation.  Furthermore, quantitative analysis framework for
reliability assessment and prediction, a feature that is absent in NERUG-0800
Chapter 7, is initially provided by this effort.  Therefore, the methodology can not
only replace part of NUREG-0800, Chapter 7, but supply missing element in the
current NRC practice.

“I believe, however, the NRC Standard Review Plan cannot be completely
replaced by this document.  They are quite complement to each other and a
more comprehensive framework for software safety and reliability can be
obtained with the integration of these two documents."

d. If you believe implementation effort is either moderate or difficult, what refinements
would you recommend be made such that the methodology can supplement or replace
current NRC practice (i.e., software reviews in accordance with the Standard Review
Plan, NUREG-0800, Chapter 7)?

X: "Use of RePSs could be integrated into NUREG-0800, Chapter 7 in the following
places:

“i.

  
“ii.

 
“iii.

 
  

“iv.

  
“v.

Table 7-1, 2d, Instrumentation and control, require a prediction of
operational reliability based on a specified RePS 
   
Section 7.0.III.B, Hardware and software development and system
validation evaluation  include consideration of RePS results. 
  
Appendix 7.1-C.4.9, Reliability of system design - designated specific
RePSs to be considered, but not as the sole criteria. 
  
Appendix 7.0-A.C.1, Review process summary - add a topic on planned
use of RePS and results to date 
  
Section 7.1.II.2.a, Software Quality - add RePS results to factors
considered 



70

“Other references would be appropriate, but I ran out of time to study the rather
extensive content of Chapter 7.  One observation is that the software-specific
content is widely distributed through the documentation, possibly inhibiting
compliance by software developers."

[UMD: ]

Y: "See above comments"

Z: "The measures other than MTBF inherently depend on subjective analysis and
are not sufficiently predictive even if they were very easy to implement."

[UMD: Test coverage RePS is not based on a subjective measurement either.  In
addition, the use of capture-recapture models can actually guard against
the subjective nature of defect density and requirements traceability. 
Finally these measurements are certainly less subjective than the types of
reviews proposed in the NUREG-0800.]

W: "See the above comments in (c)"

[UMD: ]

4. Opinion

a. What is your overall opinion of the research to this point?

X: "The research to date has been a thoughtful attempt to inventory and assess the
state of the art in assessing software quality in terms of defect content and
reliability.  Thus far, the research has not lead to specific recommendations that
could be implemented by the NRC or regulated companies."

[UMD: ]
  

Y: "I think the research is positive and deserving of added (full-scale) research and
publishing for added peer review."

[UMD: ]

Z: "The MTBF RePS can be considered a statistical estimation technique because
you use a sample (of test outcomes) to estimate the outcomes of the universe of
tests.  This approach is not novel (Musa, Schneidewind, ANSI/AIAA R-013-1992)
but it is competently applied and documented in the report.  The automation
employed for test generation and interpretation makes it more practicable than in
earlier publications.



71

“All other measures are really software quality measures, and at best predict (in
the sense of a stock market prediction) the reliability of the software.  The value
of the research is that it has shown how difficult it is to go from quality to
reliability.  If this is emphasized in the conclusion and the executive summary
(which have not been included in the review draft) the research may have
accomplished an important purpose."

[UMD: Quality measures determine reliability.  UMD agrees that this is a difficult
topic. This is why it is being investigated.  In this study it is showed that
the predictions are accurate enough for the top four RePSs (and they can
still be improved).]

W: "The research made some creditable advancement of the field in the area of
software reliability analysis and prediction for safety-critical applications. 
Although the current investigation scale is limited, the established framework is
worthwhile for further investigation.  The methodology is a good scientific
approach, given the formidable task in the nature of software engineering.  The
preliminary results are very encouraging."

[UMD: ]

b. What potential impact might this research have on state-of-the-art in software
engineering?  What potential improvements might it have on building and analyzing safe
software?

X: "The limited nature of the empirical evaluations to date and the focus on
individual RePSs in isolation means that this research will have only a small
impact on the production of software.  Moreover, an analysis of software safety
must consider not just the reliability of software, but whether or not failures affect
safety-critical (hardware) components of the system.  This suggests the need for
a level of research above that considering the effectiveness of RePSs - a level of
research that considers the effects of specific failures in terms of their effect on
the system of which the software is a part."

[UMD: The effect of specific failures is an interesting topic but is not within the
scope of this study.  The scope of this study is the assessment of the
probability of failure of the software.  Failures considered in the
assessment are high impact failures, i.e., safety critical failures.]

Y: "Use of reliability in real-time control system outside of the telecom industry will
push the "state of the art".  Safety-related systems have traditionally not used
much software or have only used hardware.  Exceptions to this exist in fields
such as aircraft and space systems.  The NRC should explore these areas and
NRC researchers for lessons learned, standards, and supporting
methodologies."



72

[UMD: ]

Z: "The greatest value is in showing the limitations of software reliability prediction
and estimation for environments where very high reliability is required.  It shows
the feasibility of reasonably accurate prediction for failure probabilities above
0.05.

“Properly interpreted, the study shows that there are no measures for missing
requirements, and that missing requirements are a key cause of failures.  It also
shows that the fault exposure ratio (for various severities) is a key requirement
for translating quality measures into reliability measures, and that this ratio
needs to be determined and validated in various application and software
development environments."

[UMD: UMD considered an application where requirements were missing. 
However the gold oracle contained these requirements and thus
measurements and RePSs were tested to determine whether they could
reveal these missing requirements.  Using the techniques proposed UMD
was then able to show that for four RePSs the probability of the relative
error of the estimate was within 9%.  Why were the results so good? 
Because the RePSs actually account for missing requirements explicitly.

It should also be clear that 9% is a relative error.  In other words, it remains
9% for 10-2, 10-4, 10-6. And 9 % of 10-6 is 9.0 × 10-8 and not 10-2.

As for the fault exposure ratio UMD showed that the pragmatic technique
proposed was able to estimate such ratio.  And what is really nice is that
the estimation procedure would hold without dramatic increase in
computation if the probability of failure was 10-6.]

W: "The current challenge in software engineering is the lack of creditable prediction
models for software reliability measurement.  This challenge is further
complicated by the need to establish a trustworthy validation process of reliability
assessment for safety-critical systems.  This research provides an initial effort in
establishing a framework on building and analyzing safe software.  The
quantitative nature of the framework makes the analysis possible, and the
detailed methodology provides a feedback mechanism to the software
development process for building more reliable software.  This research also
provides us a better understanding of software metrics and software process. 
The validation effort for large-scale software remains a major challenge for
safety-critical systems, but that would require a more dedicated research work in
the future."

[UMD: ]

5. Other Comments

X: "Page 2-2:  the machine generation of PACS Version B code appears to



73

interfere with the ability to assess its quality.  Does this suggest anything about
the "assessibility" of software produced using formal methods - a commonly
recommended approach to developing safety-critical software?"

[UMD: No.]

“Page 3-1:  need to have a discussion of what it is researchers are trying to
predict or evaluate the RePSs against early in this section.  It comes much too
late - especially since researchers use the word reliability in many different ways
in this report.  The table of thresholds introduces "rates" which I think means
"ranking"-  you might want to use the same term if the same concept is
intended.”

[UMD: The discussion concerning prediction is done in Chapter 2.  As for the
threshold values, these are actually "rates" and "not rankings".]

“Page 3-3:  The first statement under 3.6 implies that table 3-2 is about
object-oriented measures, but most of the measures listed are general - not
specific to OO.”

[UMD: By OO, UMD means a measure that can be applied to an OO system.  If a
measure can be applied to an OO system, for instance, the measure LOC,
UMD calls it an OO measure.  A footnote was added in Section 3.6. to
clarify this notion.]

“Page 3-5:  I still don't see how cause-effect graphing is a measure.”

[UMD: Please refer to the IEEE Standard 982.2.  This is the standard being
followed in this research.]

“Page 4-1: I  think you need a discussion of the life-cycle of PACS here.  Which
phase are researchers pretending to be in for the purposes of this study? 
Testing? Coding?  The defects appear to have been found through inspections,
so are researchers at the transition from coding to testing trying to assess the
level of quality at that stage?  You probably ought to explain that the reliability
assessment will be based on known, but not repaired, defects - a situation that
few builders of safety-critical software would accept.”

[UMD: All measurements were performed during the testing phase.  The reliability
prediction is for operational stage.  This has been explained in the
document. Please see Chapter 4.]

“Page 4-4:  The third paragraph is a duplicate of the last paragraph of page 4-3.” 

[UMD: Fixed.]

“Page 4-5:  You need to say something about the operational profile.  How was it



74

derived?  Why do you think it is correct?  This affects the validity of all later
results.”

[UMD: This operational profile was received from the user.]

“Page 5-6:  Why did you select a demand-based measure of reliability instead of
a mean-time-to-failure-based measure as the standard for comparison?  Is
"demand" more appropriate in some way for nuclear power systems?”

[UMD: Yes.]

“Page 5-9:  Paragraph above Equation 5-6 should say that Equations 5-3 and
5-5 were substituted for values in Equation 5-4 to yield Equation 5-6.  Current
statement isn't quite right.  You might also want to note that n is assumed equal
to 1 to explain why it disappears once the substitutions are made.  Thus, this is
the reliability for a single demand.  It might also help if the discussion of Equation
5-5 showed its transformation into t = n/r.”

[UMD: This was modified accordingly. Please refer to Section 5.1.2 ]

“Page 5-19:  The adjustment for missing code means that the more missing
code there is, the higher the computed statement coverage will be.  This is
counter-intuitive.  You need to explain this.”

[UMD: The term LOCMiss is the number of lines of code for the missing
functionalities but covered by test plan.  From this perspective, the greater
this value, the higher test coverage.]”

“Page 5-20 and following:  This duplicates the discussion of function points later
in the report.  Just refer to the later discussion here, since an understanding of
function points is not essential to understanding the concept of the adjustment
for missing code - although the purpose of the adjustment itself is not obvious.”

[UMD: They are not precisely identical.  The discussion in Section 5.3 relates to
the number of function points in the implemented version of PACS.  The
discussion in Section 5.5 refers to the total number of function points, i .e.,
the number of function points implemented and the number of function
points that should have been implemented.]

“Page 5-22:  Last paragraph indicates that coverage-based testing was not
attempted.  Given the known defects, couldn't the necessary parameters be
computed if such testing had been performed?  What was the obstacle?” 

[UMD: UMD does not understand the comment/question.]

“Page 5-25:  The statement in the middle of the page that "function points
accurately measure the size" is misleading.  1) Function have not proven to be
very effective in systems and embedded software where much of the



75

functionality is not based on  user interaction.  2) Kemerer showed in several
studied that different function point counters working on the same system
typically produce counts that differ by 10 to 30 percent.”

[UMD: UMD will remove the qualifier accurately in the sentence function points
accurately measure size.]

“Page 5-30:  Are wrongly implemented requirements counted as "missing" or
‘implemented’?”

[UMD: These requirements are counted as implemented.]

“Page 5-32:  ps(real) is obtained from reliability testing - which reliability testing -
the benchmark established by authors or something else?”

[UMD: The group of researchers was divided into two teams.  The first team
inherited the set of "real requirements" and developed the oracle.  This set
of real requirements was developed from a set of original requirements
(the ones that served to the development of the software) which were
reviewed and analyzed by representatives of the user.  Model checking
techniques were used against this specification.  In addition the set of
requirements has been perfected over time with 11 software professionals
reviewing it and a total of 30 graduate students over the years.  This team
then proceeded to perform the reliability measurement and hence
assessed ps(real).  This team also assessed MTTF since the measurement
of MTTF is done against the oracle.  The second team was composed of
the analysts who performed the other 5 measurements (defect density,
etc.).  They also performed any additional required measurements.  The
second team received the original set of requirements documents, design
documents, test plans, etc.]

“Page 5-33:  The elements counted represent dramatically different levels of
detail.  For example, the operation profile is the result of substantial analysis,
while the number of unresolved defects is a value taken from a report.  The
number of elements cannot in any way be construed as presenting the amount
of effort associated with these RePSs.  Actual data should be sought in the
literature, via trails, or at least by defining elements to count that are of the same
order of magnitude.”

[UMD The measurement of effort will be taken into consideration in further
studies.  It is understood that this is an issue of importance to the
reviewers and to those who in the future will use the methodology. 

"Page 6-1:  Capture/recapture models work best when there are substantial
numbers of defects (for example, during inspections).  Often, during the late
stages of testing there are not enough defects (or multiple capturers) even to get
a solution."



76

[UMD: UMD agrees with the reviewer that C/R models are not applicable to
extreme cases such as the case where no defect is found.  UMD agrees
that a further expansion of the RePS or a further refinement of C/R models
will be needed in that specific case.]

Y: "Data of figure 5-3 bears more analysis and research.  The current rational and
approach are not adequate."

[UMD: The current rational is based on empirical data.  Please refer to Malayia's
paper [24] for the full disclosure of the data.]

“Page 5-24 Paragraph 5.4.1 appears to have some assumptions regarding the
similarity of an OO class and a module of code.  It is not clear this is reasonable
or supported by the literature.”

[UMD: This similarity between module and classes can be treated as an
approximation for the measure "Bugs per line of code".  If it were the case
that Bugs Per Line of Code will be used to predict reliability, further
research to validate this assumption will be needed.]

“Paragraph 6.2.1.4 considers the use of mutation analysis on requirements. 
Mutation is not a fully accepted or a standardized analysis method.  It is hard to
implement correctly.  Note:  Monte Carlo simulation is well practiced and
understood in industry.”

[UMD: Monte Carlo analysis and mutation testing will play complementary roles in
further research on remaining defects.  It is noted that if a mutation
technique is to be developed mutants will be precisely defined].

“Capture/recapture (C/R) techniques outlined in 6.2.1.1 are not universal
accepted practices.  There is limited practical usage in production environments. 
I have doubt about the use of CR in software, which is primarily an intellectual
domain.  While CR has proven use in natural systems that obey statistical
distributions, it is not proven that intellectual activities map to natural systems. 
Software has examples where data clusters.  Clusters can be caused by
non-statistical causes such as poor requirements, team dynamics, environments,
languages, etc.  These can lack normal statistical distributions, which CR relies
on.”

[UMD: Specific types of C/R models have been developed to cover the problems
discussed above such as the clustering issue.  C/R models have been used
in practice in software engineering and have been validated.  The
conditions under which they provide valid results have been investigated.
Please refer to the following references for a more detailed overview:  [11,
16, 30, 37].]

"Automation to collect metrics resulting for a standardized process could help
assure validity of numbers and consistency across products/companies."



77

[UMD: ]

Z:

W: 



78

8. RePS APPLICATION TO PACS II

8.0  Overview

A newer version of PACS called PACS II was developed under National Aeronautical and
Space Administration (NASA) sponsorship.  The UMD research team applied the RePS method
to PACS II to further validate the UMD method.  This chapter presents the results of this work
and highlights the difference in the practice of measurements and reliability assessments.

8.1  Application under Validation

The West Virginia University development team developed PACS II based on the PACS user
requirements.  The development followed the traditional waterfall lifecycle model (requirements,
design, coding and testing) and utilized the UML technique.  The following documents are
available:

1. PACS User Requirements
2. PACS Software Requirements Specification (SRS)
3. PACS Software Design Description (SDD)
4. PACS Source Code
5. PACS Test Plan

8.2  Validation Configuration

The PACS II validation experiment (including the software development and measurement) was
conducted in two stages.  In Stage I, PACS 0.1 was developed and its reliability was estimated
(around 0.6).  Since this reliability level did not satisfy the reliability requirements of a typical
safety critical system, an improvement to PACS was initiated.  As a result, PACS 0.2 was
developed for Stage II and its reliability was approximated as 0.998.

The UMD research team conducted measurements for both PACS 0.1 and PACS 0.2.  Only the
measurement for PACS 0.2 was used to assess its software reliability.

The measurement team at UMD is composed of two graduate research assistants (GRA)
(GRA1, GRA2) working in Stage I and one GRA (GRA2) for Stage II.  A research associate
(Postdoc) played a role of moderator in both stages.  Table 34 summarizes the role of each
participant in this experiment.  An explanation of less human resources in Stage II is that more
tools were used in measurement which significantly reduces the effort required.

8.3  Measurement of PACS II

This section presents the measurement results for PACS II.

8.3.1  PACS II Reliability Estimation

The reliability testing of PACS II followed the same procedure as defined in Section 4.5.  The
operational profile is listed in Table 35.  The testing configuration and results are summarized in
Table 36.



79

Table 34   Measurement Team Responsibilities and Tasks

Measurement Task
PACS Version 0.1 PACS Version 0.2

GRA1 GRA2 Postdoc GRA2 Postdoc
Defect Density Inspector Inspector Moderator Inspector Moderator
Test Coverage N/A Measurer Moderator Measurer Moderator
Requirements
Traceability Measurer N/A Moderator Measurer Moderator 

Function Point Measurer N/A Moderator Measurer Moderator 
Bugs per Line of Code Measurer N/A Moderator Measurer Moderator 

Table 35   Operational Profile for PACS II

No. Description of the Event Probability 
1 Entering a good card:  A good card is one that contains valid data in the

correct format.  In other words, this event reflects the number of times a
genuine card is being entered in the system.  

0.97

2 Entering a good PIN:  This event that reflects that the four digits of the PIN
are correct and match the entry in the database.

0.8 

3 Entry of the 1st digit within time allowed:  The allowed time for entry of the
first digit of the PIN is 10 seconds.  

0.98

4 Entry of subsequent digits of PIN within time allowed:  The allowed time
is 5 seconds 

0.97

5 Erasure of a PIN digit:  The PIN digits are erased whenever the keys # or *
are pressed. 

0.001

6 User able to pass within the stipulated time after opening of gate. 0.99
7 Guard is requested for extra time. 0.01
8 Guard allows extra 10 seconds. 0.01
9 Guard Override:  This event refers to the guard overriding the verdict of the

system.  The system passes control to the guard after three failed attempts
to enter a PIN/ Card.  The message "See Officer" is displayed on the LED
screen and the guard has the ability to allow the user to get in (the override)
or reset the system to its initial state. 

0.5

10 R6 fails to 0/1 0.001
11 R10 fails to 0/1 0.001
12 R6 time out 0.001
13 R10 time out 0.001
14 R5 time out 0.001
15 R11 time out 0.001



80

It is worth noting that the operational profile presented in Table 35 is different from the one in
Table 3.  These minor differences reflect different user interfaces of the two versions of PACS.

Table 36   Reliability Testing Configuration

Processor
RAM
Processor Speed
Number of Test Cases
Duration
Number of Failures
Ps

Intel Pentium III
384 MB RAM
400 MHz
2000
74577 s
3
0.9985 

8.3.2  Mean Time to Failure

The UMD research team decided not to validate the ranking of Mean Time to Failure because
the close relationship between this measure and reliability.

8.3.3  Defect Density

Only one inspector and one moderator conducted the defect density measurement. Table 37
summarizes the defects discovered during the defect inspection process. The total number of
defects found is 2.

Table 37   Defects Descriptions

Defect
No. Defect Description Severity

Level

1 Timeout occurs 5 seconds after R6 sets to 1 if R10 does
not set to 1.

Level 1

2 Timeout occurs 10 seconds after message "RETRY"
displays if R6 does not set to 1.

Level 1

A tool named RSM (Resource Standard Metrics) [32] was used to count the number of lines of
code in this experiment.  The LOC was counted as 535. Thus the defect density is 3.74
defects/KLOC.

8.3.4  Test Coverage

An open source test coverage tool (COVTOOL) [17] was used to measure the test coverage for
PACS II. The output of this tool is 97.2%.

8.3.5  Requirements Traceability 

The PACS II SRS does not contain MRL directly.  The UMD measurement team broke the
PACS II SRS function by function into a number of verbs or verb phrases that represent



81

end-user meaningful requirements primitives (see Section 5.6.2).  Table 38 enumerates the
requirements obtained from the initial user specifications.

Thus R1 = 34 and R2 = 36.  The requirements traceability is R1/R2 = 106%.  This result is
greater than 100% because there are two additional requirements implemented in PACS II.

8.3.6  Function Point

The function point counting followed the same procedure defined in Section 5.5. The Function
Points for PACS II is 78.

8.3.7  Bugs per Line of Code

As described in Section 8.3.3 the LOC was counted using RSM tool.  Table 39 summarizes the
LOC per class/module and its associated number of bugs.  The total number of bugs is 33.



82

Table 38    Requirements Traceability Results

Requirements
No. Function Implemented Additional

1 Display "Insert Card" Y
2 Read R6 Y
3 Check R6 for 0 or 1 to determine if a card has been entered Y
4 Read 9-digit SSN Y
5 Read 20-character last name Y
6 Validate card against database Card.val Y
7 Display "Enter PIN" in message.led if card is valid Y
8 Display "Retry" in message.led if card is invalid Y
9 Maximum allow 3 times of invalid inserting cards Y

10 After 3 tries and card is still invalid, display "See Officer" in
message.led Y

11 After 3 tries and card is still invalid, a duplicate message is sent
to officer.led Y

12 After 3 tries and card is still invalid, Register R8 set to 1 Y
13 After 3 tries and card is still invalid, the Officer set R7 to 1 Y
14 14 System shall read R7 and re-initialize after 3 tries are invalid Y
15 If card is valid, start timing Y
16 If card is valid, display "Enter PIN" in message.led Y
17 Read R1 Y

18 Check the time elapsed between "Enter PIN" message and
acquisition of R1. Y

19 If the time is greater than 10 seconds reset operation (start from
Insert Card) Y

20 Read R2 Y
21 Read R3 Y
22 Read R4 Y
23 Check the time elapsed between adjacent key entering Y
24 If the time is greater than 5 seconds display "Enter PIN" Y
25 Validate the entered PIN Y
26 Display "Please Proceed" in message.led if PIN is valid Y
27 Display "Invalid PIN" in message.led if PIN is invalid Y
28 Maximum 3 tries of "Enter PIN" are allowed Y
29 After 3 unsuccessful tries, display "See Officer" in message.led Y
30 After 3 unsuccessful tries, display "See Officer" in officer.led Y
31 Set R5 to 1 to open the gate if PIN is valid Y

32 System automatically resets itself 10 seconds after opening the
gate Y

33 Display "Access Denied" to reader for any failure of the system Y

34 Display "Access Denied" to attending guard for any failure of the
system Y

35 Timeout occurs 5 seconds after R6 sets to 1 if R10 does not set
to 1. Y

36 Timeout occurs 10 seconds after message "RETRY" displays if
R6 does not set to 1. Y

 



83

Table 39   Bugs per LOC Measurement Results

Module
LOC Number

of Bugs.h .cpp Total

Auditor
Comm 
Display
Exception
PACS
Validator
main

1323
1329
2712

0

231
013
902
052
614

3612
4522
9232
4814

4.378304 
5.127513 
4.491136 
4.333646 
6.338333 
4.461665 
4.250613

Total 535 33.3812 

8.4  RePS Results of PACS II

This section presents the prediction results from the six RePSs.

8.4.1  Mean Time to Failure

The measurement team obtained "Mean Time to Failure" using software testing (refer to Section
5.1 and Equation 9).  This measurement differs from the reliability estimation (see Chapter 4) on
the fact that the latter team has the oracle but the former built the testing model (the FSM model)
based on their understanding of the system behavior.  This measure is theoretically identical with
the reliability (see Equation 9).  The error introduced in the reliability estimation process based on
this measure is measurement error.  The "Relevance to reliability" value of this measure should
theoretically be 1. Therefore there is no need to validate this measure on PACS II.

8.4.2  Defect Density

The UMD research team conducted a FSM model for PACS II and mapped the two defects
described in Section 8.3.3 by following the techniques presented in Section 5.2.4.2.  The probability
of failure per demand obtained from the FSM model is 0.001061.  Thus the probability of success
per demand ps* (defect density) is 1- 0.001061 = 0.998939.

8.4.3  Test Coverage

To assess software reliability from the test coverage requires measurement of the linear execution
time (TL), the average execution time per demand (τ) and the fault exposure ratio (K).  Acquisition
of these parameters is described below.

Linear Execution Time TL

The PACS II linear execution time was simulated by creating a linear code (without loop) of 71 lines
of code using C++.  The statements in this piece of code followed the same pattern as PACS, which



84

means the coding style and frequency at which a type of statement appears were similar.  The
average execution time of this code is 0.0138s.  Since the number of lines of code for PACS II is
535, the average linear execution time for PACS II is 0.0138 · (535 / 71) = 0.104s.

The Average Execution Time per Demand τ

The average execution time per demand is defined as the duration between adjacent runs.  This
number is obtained from the test log for PACS II, that is, the total time of testing divided by the
number test cases, and is 37.29s.

Fault Exposure Ratio

The average K for the two defects found in "Defect Density" is obtained below:
 

                  ( 41)
� � � �K

p

T
N

f

L

�

� �

�

�

� �

�

� �
�

ln ln .
.

.

.
1 1 0 001061

37 29
0104

2
148 10 6

�

Two defects were found in the PACS II test plan.  The reliability predicted from the test coverage
RePS is summarized inTable 40.

The PACS II user discovered two defects in the PACS II Software Test Plan.  These two defects
are identical to the defects found during the "Defect Density" measurement.

Table 40   Test Coverage RePS Results

DS2 DS3 DS4
C1 0.97173 0.97173 0.97173
C0 1 0.89902 0.85626  
N0 2 2 2
N 2 2.23 2.34
K 1.48 × 10-6

ps* 0.99894 0.99882 0.99876

The average ps* (test coverage) = 0.99884.

8.4.4  Requirements Traceability

The defects discovered through the "Requirement Traceability" measurement are identical to those
from the "Defect Density" measurement.  Thus the probability of success per demand ps*
(Requirements Traceability) is 1- 0.001061 = 0.998939.



85

8.4.5  Function Point

Applying the function point RePS described in Section 5.5.4 resulted in the number of delivered
defects in PACS II and the reliability estimations presented in Table 41.

Table 41   Number of Delivered Defects vs. ps

System Software
(From Table 5-20)

Severity Level
(From Table 5-22)

Number of delivered defects 6.28 4.33
ps*  0.9991 0.9994
Average 0.9993

8.4.6  Bugs per Line of Code

The number of defects derived from this measure is 33.38.  The corresponding Ps* (Bugs/LOC) is
0.9950.

8.5  Summary and Conclusion

Table 42 summarizes the validation results for both PACS (the version described in Chapter 5) and
PACS II (ps* represents the reliability prediction from a RePS).  The measure "Test Coverage"
ranks highest among the selected five measures for PACS II, followed by "Defect Density" and
"Requirements Traceability".  This is due to the fact that the number of defects obtained from "Test
Coverage" is more accurate because it contains the number of defects unknown in the delivered
software.  It is worth noting that the "Test Coverage" RePS rank is improved by utilizing the "Defect
Density" RePSs' FSM technique to obtain the fault exposure ratio (K).

Another important observation obtained from both validations is that measures "Defect Density",
"Test Coverage" and "Requirements Traceability" are all good reliability indicators because their
relative prediction errors (pe) are all very small.



86

Table 42   Validation Results of PACS and PACS II

Measure

PACS I Results PACS II Results Rankings
Based

on
Expert

Opinion
 ps* pe

Validatio
n

Rankings
 ps* pe

Validatio
n

Rankings

Mean time to
failure 0.9185 0.0296 1 N/A N/A 1 1

Defect density 0.9224 0.0766 2 0.9989 0.29 3 2

Test coverage 0.908 0.0952 4 0.9988 0.23 2 3

Requirements
traceability 0.9224 0.0766 3 0.9989 0.29 3 4

Function point 0.9986 0.9827 6 0.9997 0.8  5 5

Bugs per line of
code
(Gaffney estimate)

0.9799 0.7607 5 0.9950 2.3  6 6

ps(real)  0.916  0.9985 

The major contribution of this PACS II validation is that it demonstrates that the rankings based
on expert opinion and UMD's RePS method are applicable to a high reliable software system. 
However, a larger scale validation (more measures and larger field application) is necessary to
demonstrate conclusively the efficacy of the RePS theory for predicting software quality.



87

9. CONCLUSIONS

The objective of this research was to evaluate the methodology presented in NUREG/GR-0019
with respect to its predictive ability and, to a lesser extent, its usability.  In NUREG/GR-0019
thirty-two software engineering measures were ranked with respect to their prediction ability. 
As a result of that effort, a theoretical approach to predicting software reliability from those
measures (the RePS theory) was proposed.  The validation effort presented in this report
comprises two parts (although not distinguished explicitly):

1. Validation of the RePS theory.

By establishing RePSs from the measures selected in this study, these RePSs
can be used to predict the software reliability of a given software application. 
After selecting the software application, the result of RePSs’ software quality
predictions are then validated by comparing the predictions to the "real" software
reliability obtained from software testing;

2. Validation of the rankings presented in NUREG/GR-0019.

By comparing NUREG/GR-0019 rankings to the RePS predictions, efficacy of
the RePS theory is demonstrated.

Because this was an initial validation limited in scope to a subset of software measures, six
measures were selected from the set of thirty-two Object Oriented measures.  The criteria for
selection were:
  

1. Ranking levels
  

2. Data availability
  

3. Ease of RePS construction
  

4. Coverage of different families

The six selected measures are "Mean time to failure", "Defect density", "Test coverage",
"Requirements traceability", "Function point analysis" and "Bugs per line of code (Gaffney
estimate)."

The application under validation, PACS, is a simplified version of an automated personnel entry
access system that controls physical access to rooms/buildings, etc.  This system shares some
attributes of a reactor protection system, such as functioning in real-time to produce a binary
output based upon inputs from a relatively simple human-machine interface with an end
user/operator.

PACS's reliability (ps) was assessed by testing the software code with an expected operational
profile.  The testing process involves:  developing a test oracle using Test Master, a tool that
generates test scripts in accordance with the operational profile; executing the test scripts using
WinRunner, the test harness that also records the test results; and calculating the reliability of
PACS using the recorded results.



88

Next, six RePSs were established.  The RePS constructed from "Mean time to failure" obtained
reliability from the time to failure data determined from testing PACS with a given operational
profile.  The measure "Defect density" and its associated defect information were obtained from
software code inspections of PACS.  These defects’ execution, infection and propagation
characteristics were investigated using a finite state machine model.  Reliability was estimated
by combining these characteristics.  The "Test coverage" RePS first derived the defect
coverage quantity from the "Test coverage" measure.  The number of defects remaining was
then calculated using the "defect coverage" and the number of defects discovered by test.  The
reliability estimation was made using the number of defects remaining and their fault exposure
characteristics.  An estimate of the average fault exposure ratio that reflects such
characteristics was obtained on the basis of the PIE technique used in the "Defect density"
RePS.

Since the defects discovered by inspection are requirements defects, the "Requirements
traceability" RePS is identical to "Defect density" RePS.  Two techniques were used to derive
the number of defects remaining from both "Function point analysis"and "Bugs per line of code
(Gaffney stimate)."  The corresponding reliability was estimated using the fault exposure ratio. 
The fault exposure ratio value found in the scientific literature was used in this calculation since
there was no defect information available.

Potential improvements to these six preliminary RePSs were discussed in Chapter 6.

In order to ascertain the validity of the approach, a panel of experts was convened.  The four
experts had participated in NUREG/GR-0019 and have extensive knowledge of the topic under
study.  Their feedback is included in Chapter 7.  UMD's responses to these comments have
also been included in Chapter 7.

The rankings obtained in this study for six measures are consistent with the expert rankings
presented in NUREG/GR-0019.  The results also demonstrate that the predictive capability of
the top four RePSs is sufficiently accurate for applications whose failure probability is 10-2 per
demand.  It is expected that these results will hold for safety critical applications with a target
probability of failure on demand of 10-6.

Because PACS's reliability was so much lower than that expected of reactor protection
systems, another study was conducted to validate the RePS method on software of higher
reliability applications.  As part of the follow-on study a higher reliability version of the PACS
software was used.  The results demonstrated that the predictive capability of the RePSs for
this application (10-4) was also sufficiently accurate.

Based on these findings the method has been validated for the test phase of the software life
cycle of simple software systems having a targeted reliability up to 10-4.  Validation of the RePS
method is needed using more measures on larger scale systems of higher reliability. 
Furthermore, a substantial research program needs to be undertaken to advance
the-state-of-the-art in the software reliability field, the potential research direction for which is
proposed in Chapter 6.



89

10. REFERENCES

[1] "IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable
Software", IEEE, New York IEEE Std 982.2, 1988.

[2] "PACS Design Specification," Lockheed Martin Corporation, Inc., Gaithersburg, MD July
23 1998.

[3] "PACS Requirements Specification", Lockheed Martin Corporation Inc., Gaithersburg,
MD July 20 1998.

[4] "PACS Source Code", Lockheed Martin Corporation Inc., Gaithersburg, MD July 28
1998.

[5] "PACS Test Plan", Lockheed Martin Corporation, Gaithersburg, MD 1998.

[6] "Reliability Data Acquistition and Processing", Bird Engineering Research Associates,
Inc., Vienna, Virginia December 31 1975.

[7] "TestMaster Reference Guide" ,Teradyne Software & System Test, Nashua, New
Hamsphire August 2000.

[8] "TestMaster User's Manual", Teradyne Software & Systems Test, Nashua, New
Hampshire October 2000.

[9] Bicarregui and, J. D., E. Woods, "Quantitative Analysis of an Application of Formal
Methods", presented at the 3rd International Symposium of Formal Methods Europe,
Oxford, UK, 1996.

[10] Bird, R., "Introduction to Functional Programming using Haskell", 2nd ed. New York:
Prentice Hall Press, 1998.

[11] Briand, L. C., K. E. Emam, and B. Freimut, "A Comparison and Integration of
Capture-Recapture Models and the Detection Profile Method", presented at Ninth
International Symposium on Software Reliability Engineering, Paderborn, Germany,
1998.

[12] Briand, L. C., K. E. Emam, B. Freimut, and O. Laitenberger, "Quantitative Evaluation of
Capture-Recapture Models to Control Software Inspections", presented at The Eighth
International Symposium on Software Reliability Engineering, Albuquerque, NM, USA,
1997. 

[13] Burnham, K. P., "Estimation of the Size of a Closed Population When Capture
Probabilities Vary Among Animals", Biometrika, vol. 65, pp. 625-33, 1978.

[14] Butler R. W. and G. B. Finelli, "The Infeasibility of Quantifying the Reliability of
Life-Critical Real-Time Software", IEEE Transactions on Software Engineering, vol. 19,
pp. 3-12, 1993. 

[15] Chao, A., "Estimate Animal Abundance with Capture Frequency Data", Wild Life
Manage, vol. 52, pp. 295-300, 1988.



90

[16] Chao, A., S. M. Lee, and S. L. Jeng, "Estimating Population Size for Capture-Recapture
Data When Capture Probabilities Vary by Time and Individual Animal", Biometrics, vol.
48, pp. 201-16, 1992.

[17] http://covtool.sourceforge.net/

[18] Gaffney, J. E., "Estimating the Number of Faults in Code", IEEE Transactions on
Software Engineering, vol. 10, pp. 459-64, 1984.

[19] Heller, R., "An Introduction to Function Point Analysis", in Newsletter from Process
Strategies, 1996.

[20] Humphrey, W. S., "A Discipline for Software Engineering", Addison-Wesley Publishing
Company, New York, 1995.

[21] Jones, C., "Applied Software Measurement", 2nd ed., McGraw-Hill, New York, 1996.

[22] Jones, C., "Programming Productivity", McGraw-Hill Inc., New York, 1996.
 
[23] Malaiya, Y., A. V. Mayrhauser, and P. Srimani, "An Examination of Fault Exposure

Ratio", IEEE Transactions on Software Engineering, vol. 19, pp. 1087-94, 1993.

[24] Malaiya, Y. K., N. Li, J. M. Bieman, R. Karcich, B. Skibbe, and S. Tek, "Software Test
Coverage and Reliability", Colorado State University, Fort Collins, Colorado 1996.

[25] Modarres, M., "Reliability and Risk Analysis: What Every Engineer Should Know About
Reliability and Risk Analysis", Marcel Dekker, Inc., New York, 1993.

[26] Mukherjee, D., "Measuring Multidimensional Deprivation", Mathematical Social
Sciences, vol. 42, pp. 233-51, 2001.

[27] Musa, J. D., A. Iannino, and K. Okumoto, "Software Reliability - Measurement,
Prediction, Applications", McGraw-Hill, New York, 1987.

[28] NRC, "Regulatory Guide 1.172, Software Requirements Specifications for Digital
Computer Software Used in Safety Systems of Nuclear Power Plants", U.S. Nuclear
Regulatory Commission, Office of Nuclear Regulatory, Washington D.C. September
1997.

[29] Otis, D., K. Burham, G. White, and D. Anderson, "Statistical Inference from Capture
Data on Closed Animal Populations", Wildlife Monographs, vol. 62, pp. 1-135, 1978.

[30] Petersson, H. and T. Thelin, "A Survey of Capture-Recapture in Software Inspections",
presented at Swedish Conference on Software Engineering Research and Practise,
Ronneby, Sweden, 2001.

[31] Pressman, R., "Software Engineering: A Practitioner's Approach", McGraw-Hill, New
York, 1992.



91

[32] http://msquaredtechnologies.com/ 

[33] Schach, S. R., "Software Engineering", 2nd ed., Aksen Associates Inc., Homewood, IL,   
           1993.

[34] Smidts, C., and M. Li, "Software Engineering Measures for Predicting Software
Reliability in Safety Critical Digital Systems", University of Maryland, NUREG/GR-0019,
Washington D.C., November 2000.

[35] Smidts C., and H. Xin, "Requirements Specifications for Personnel Access Control
System", University of Maryland, College Park, MD, September 18 1997.

[36] Thompson, M. C., D. J. Richardson, and L. A. Clarke, "An Information Flow Model of
Fault Detection", presented at International Symposium on Software Testing and
Analysis, Cambridge, MA, USA, 1993.

[37] Vander Wiel, S. A. and L. G. Votta, "Assessing Software Designs Using
Capture-Recapture Methods", IEEE Transactions on Software Engineering, vol. 19, pp.
1045-1054, 1993. 

[38] Voas, J. M., "PIE: A Dynamic Failure-Based Technique", IEEE Transactions on
Software Engineering, vol. 18, pp. 717-27, 1992.

[39] Widmaier, J. C., C. Smidts, and H. Xin, "Producing More Reliable Software:  Mature
Software Engineering Process vs. State-of-the-Art Technology?", presented at the 2000
International Conference on Software Engineering, Limerick, Ireland, 2000.




